488 Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap. 6

—
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Figure 6.1 (continued)

particular in the analysis of contact problems, of which a simple example is given in
Fig. 6.1(e). In general, this change in boundary condition may be encountered in any one
of the analyses summarized in Table 6.1.

In actual analysis, it is necessary to decide whether a problem falls into one or the
other category of analysis, and this dictates which formulation will be used to describe the
actual physical situation. Conversely, we may say that by the use of a specific formulation,
a model of the actual physical situation is assumed, and the choice of formulation is part of
the complete modeling process. Surely, the use of the most general large strain formulation
“will always be correct”; however, the use of a more restrictive formulation may be compu-
tationally more effective and may also provide more insight into the response prediction.

Before we discuss the general formulations of nonlinear analyses, it would be instruc-
tive to consider first two simple examples that demonstrate some of the features listed in
Table 6.1.

EXAMPLE 6.1: A bar rigidly supported at both ends is subjected to an axial load as shown in
Fig. E6.1(a). The stress-strain relation and the load-versus-time curve relation are given in
Figs. E6.1(b) and (c), respectively. Assuming that the displacements and strains are small and
that the load is applied slowly, calculate the displacement at the point of load application.
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{c) Load variation
Figure E6.1 Analysis of simple bar structure

Since the load is applied slowly and the displacements and strains are small, we calculate
the response of the bar using a static analysis with material nonlinearities only. Then we have for
sections a and b, the strain relations

3 3
o = %, g, = — %
©=1 € L (a)
the equilibrium relations, ‘R + '0vA = '0.A (b)

and the constitutive relations, under loading conditions,

!

o . . .
‘e = E in the elastic region
v - o ©
‘€ =€ + 2 in the plastic region
E;
A
and in unloading, Ae = fa’

In these relations the superscript ¢t denotes “at time ¢.”

(i) Both sections a and b are elastic
During the initial phase of load application both sections a and b are elastic. Then we have,
using (a) to (c),

o — a1 1
R = EAu(La +Lb>
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and substituting the values given in Fig. E6.1, we obtain

[ S— tR
T TX 108
. . _ R, o _2R
with 0',,—3A, oy = 3a )]

(ii) Section a is elastic while section b is plastic
Section b will become plastic at time #* when, using (d),

“R=30,A
Afterward we therefore have
‘g, = E t—u
L,
©
‘u
'0'], = “ET<L—b - Ey> - Oy

Using (e), we therefore have for r = r*,

EA'u  ErAu
= +

‘R L L Ere,A + 0y,A
'R/A + ETEy - Oy
d th =
and thus u (E/L) + (Ev/Ly)
‘R
= ————— — 19412 X 1072
1.02 X 10°

We may note that section a would become plastic when ‘e, = oy or ‘R = 4.02 X 10* N. Since
the load does not reach this value [see Fig. E6.1(c)], section a remains elastic throughout the
response history.
(ili) In unloading both sections act elastically
_ AR

EA[(1/L2) + (1/Ly)]
The calculated response is depicted in Fig. E6.1(d).
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(d) Calculated response Figure E6.1 (continued)
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EXAMPLE 6.2: A pretensioned cable is subjected to a transverse load midway between the
supports as shown in Fig. E6.2(a). A spring is placed below the load at a distance wgap. Assume
that the displacements are small so that the force in the cable remains constant, and that the load
is applied slowly. Calculate the displacement under the load as a function of the load intensity.
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H=100N (b} Load 'w(cm)

7 (c) Calculated response
Spring constant

k=2 N/ecm
(a) Pretensioned cable subjected to transverse load

Figure E6.2 Analysis of pretensioned cable with a spring support
As in Example 6.1, we neglect inertia forces and assume small displacements. As long as
the displacement ‘w under the load is smaller than wy,,, vertical equilibrium requires for small ‘w,
¢,
R = 2H~ @
Once the displacement is larger than wy,,, the following equilibrium equation holds:
‘w

IR = ZHZ + k('w — wgp) (b)

Figure E6.2(c) shows graphically the force displacement relations given in (a) and (b).
‘We should note that in this analysis we neglected the elasticity of the cable; therefore the

response is calculated using only the equilibrium equations in (a) and (b), and the only nonlinear-
ity is due to the contact condition established when ‘w = wy,,.

Although these examples represent two very simple problems, the given solutions
display some important general features. The basic problem in a general nonlinear analysis
is to find the state of equilibrium of a body corresponding to the applied loads. Assuming
that the externally applied loads are described as a function of time, as in Examples 6.1 and
6.2, the equilibrium conditions of a system of finite elements representing the body under
consideration can be expressed as

‘R—'F=0 (6.2)

where the vector ‘R lists the externally applied nodal point forces in the configuration at
time ¢ and the vector 'F lists the nodal point forces that correspond to the element stresses
in this configuration. Hence, using the notation in Chapter 4, relations (4.18) and (4.20) to
(4.22), we have

‘R ="'Rpg +'Rs + ‘Re (6.3)
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and, identifying the current stresses as initial stresses, R, = ‘F,

F=2 | BTGy 6.4)
m tv(m)
where in a general large deformation analysis the stresses as well as the volume of the body
at time ¢ are unknown.

The relation in (6.2) must express the equilibrium of the system in the current de-
formed geometry taking due account of all nonlinearities. Also, in a dynamic analysis, the
vector ‘R would include the inertia and damping forces, as discussed in Section 4.2.1.

Considering the solution of the nonlinear response, we recognize that the equilibrium
relation in (6.2) must be satisfied throughout the complete history of load application; i.e.,
the time variable ¢ may take on any value from zero to the maximum time of interest (see
Examples 6.1 and 6.2). In a static analysis without time effects other than the definition of
the load level (e.g., without creep effects; see Section 6.6.3), time is only a convenient
variable which denotes different intensities of load applications and correspondingly differ-
ent configurations. However, in a dynamic analysis and in static analysis with material time
effects, the time variable is an actual variable to be properly included in the modeling of the
actual physical situation. Based on these considerations, we realize that the use of the time
variable to describe the load application and history of solution represents a very general
approach and corresponds to our earlier assertion that a “dynamic analysis is basically a
static analysis including inertia effects.”

As for the analysis results to be calculated, in many solutions only the stresses and
displacements reached at specific load levels or at specific times are required. In some
nonlinear static analyses the equilibrium configurations corresponding to these load levels
can be calculated without also solving for other equilibrium configurations. However, when
the analysis includes path-dependent nonlinear geometric or material conditions, or time-
dependent phenomena, the equilibrium relations in {6.2) need to be solved for the complete
time range of interest. This response calculation is effectively carried out using a step-by-
step incremental solution, which reduces to a one-step analysis if in a static time-
independent solution the total load is applied all together and only the configuration corre-
sponding to that load is calculated. However, we shall see that for computational reasons,
in practice, even the analysis of such a case frequently requires an incremental solution,
performed automatically (see also Section 8.4), with a number of load steps to finally reach
the total applied load.

The basic approach in an incremental step-by-step solution is to assume that the
solution for the discrete time ¢ is known and that the solution for the discrete time ¢ + At
is required, where At is a suitably chosen time increment. Hence, considering (6.2) at time
t + At we have

t+AtR _ r+A;F =9 (6.5)

where the left superscript denotes “at time ¢ + Ar.” Assume that ***'R is independent of the
deformations. Since the solution is known at time ¢, we can write

H&F = F + F (66)

where F is the increment in nodal point forces corresponding to the increment in element
displacements and stresses from time ¢ to time ¢ + Az. This vector can be approximated
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using a tangent stiffness matrix ‘K which corresponds to the geometric and material condi-
tions at time ¢,

F = 'KU 6.7)
where U is a vector of incremental nodal point displacements and
x = 2F
- U (6.8)

Hence, the tangent stiffness matrix corresponds to the derivative of the internal element
nodal point forces ‘F with respect to the nodal point displacements ‘U.
Substituting (6.7) and (6.6) into (6.5), we obtain

'KU = &R — F (6.9)
and solving for U, we can calculate an approximation to the displacements at time ¢ + Az,
oy =Y + U (6.10)

The exact displacements at time ¢ + At are those that correspond to the applied loads ***'R.
We calculate in (6.10) only an approximation to these displacements because (6.7) was
used.

Much of our discussion in this chapter will focus on the proper and effective evaluation
of ‘'F and ‘K.

Having evaluated an approximation to the displacements corresponding to time ¢ +
At, we could now solve for an approximation to the stresses and corresponding nodal point
forces at time ¢ + Az, and then proceed to the next time increment calculations. However,
because of the assumption in (6.7), such a solution may be subject to very significant errors
and, depending on the time or load step sizes used, may indeed be unstable. In practice, it
is therefore necessary to iterate until the solution of (6.5) is obtained to sufficient accuracy.

The widely used iteration methods in finite element analysis are based on the classical
Newton-Raphson technique (see, for example, E. Kreyszig [A] and see N. Biéani¢ and
K. H. Johnson [A]), which we formally derive in Section 8.4. This method is an extension
of the simple incremental technique given in (6.9) and (6.10). That is, having calculated an
increment in the nodal point displacements, which defines a new rozal displacement vector,
we can repeat the incremental solution presented above using the currently known total
displacements instead of the displacements at time ¢.

The equations used in the Newton-Raphson iteration are, fori = 1,2,3, ...,
+AgG~1) () — Ar — t+ArG-1)
+ K AU 1+ R + F 1 (6.11)
HAO = Fae-) 4 AUY
with the initial conditions
t+AtU(0) . rU; t+AIK(O) — tK; '+A'F(0) = 'f (612)

Note that in the first iteration, the relations in (6.11) reduce to the equations (6.9) and
(6.10). Then, in subsequent iterations, the latest estimates for the nodal point displacements
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are used to evaluate the corresponding element stresses and nodal point forces ***F¢1 and
tangent stiffness matrix ‘+~K¥D,

The out-of-balance load vector **~R — **~F¢ 1 corresponds to a load vector that is
not yet balanced by element stresses, and hence an increment in the nodal point displace-
ments is required. This updating of the nodal point displacements in the iteration is contin-
ued until the out-of-balance loads and incremental displacements are small.

Let us summarize some important considerations regarding the Newton-Raphson
iterative solution.

An important point is that the correct calculation of **F¢~? from ‘*U¢"V is crucial.
Any errors in this calculation will, in general, result in an incorrect response prediction,

The correct evaluation of the tangent stiffness matrix **2K¢? is also important. The
use of the proper tangent stiffness matrix may be necessary for convergence and, in general,
will result in fewer iterations until convergence is reached.

However, because of the expense involved in evaluating and factoring a new tangent
stiffness matrix, in practice, it can be more efficient, depending on the nonlinearities present
in the analysis, to evaluate a new tangent stiffness matrix only at certain times. Specifically,
in the modified Newton-Raphson method a new tangent stiffness matrix is established only
at the beginning of each load step, and in quasi-Newton methods secant stiffness matrices
are used instead of the tangent stiffness matrix (see Section 8.4). We note that, which
scheme to use is only a matter of computational efficiency provided convergence is reached.

The use of the iterative solution requires appropriate convergence criteria. If inappro-
priate criteria are used, the iteration may be terminated before the necessary solution
accuracy is reached or be continued after the required accuracy has been reached.

We discuss these numerical considerations in Section 8.4 but note here that whichever
iterative technique is used, the basic requirements are (1) the evaluation of the (tangent)
stiffness matrix corresponding to a given state and (2) the evaluation of the nodal force
vector corresponding to the stresses in that state (the “state” being given by ‘U or **4U¢1,
i=1,2,3,...). Hence, our primary focus in this chapter is on explaining how, for a
generic state, and we use the state at time ¢, the tangent stiffness matrices ‘K and force
vectors ‘F for various elements and material stress-strain relations can be evaluated.

Let us now demonstrate these concepts in two examples.

EXAMPLE 6.3: I1dealize the simple arch structure shown in Fig. E6.3(a) as an assemblage of
two bar elements. Assume that the force in one bar element is given by 'Fi,. = k'8, where k is
a constant and ‘8 is the elongation of the bar at time #. (The assumption that & is constant is likely
to be valid only for small deformations in the bar, but we use this assumption in order to simplify
the analysis.) Establish the equilibrium relation (6.5) for this problem.

tR tR/Z
L/'\ 2
15° ! 15° '

(a) Bar assemblage subjected to apex load (b) Simple model using one bar (truss) element,
nodes 1 and 2

Figure E6.3 A simple arch structure
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Figure E6.3 (continued)

This is a large displacement problem, and the response is calculated by focusing attention
on the equilibrium of the bar assemblage in the configuration corresponding to a typical time z.
Using symmetry as shown in Figs. E6.3(b) and (c), we have

(L —'8)cos'B = Lcos 15°
(L—1'0)sin'B = Lsin15° —'A
hence, ‘6 =L — VL? — 2L'Asin 15° + 'A?
Lsin 15° — ‘A
L—-18

sin'f3 =

Equilibrium at time ¢ requires that
2 '"Foo sin ‘B = 'R

hence, the relation in (6.5) is

1
R _]-1+ T 7 21/2<- c_'_é>
2%L {1 - 2% sin 15° + (%)] sin 15" = 7 (@)

Figure E6.3(d) shows the force-displacement relationship established in (a). It should be noted
that between points A and B, for a given load level, we have two possible displacement configura-
tions. If the structure is loaded with ‘R monotonically increasing, the displacement path with
snap-through from A to B in Fig. E6.3(d) is likely to be followed in an actual physical situation.

EXAMPLE 6.4: Calculate the response of the bar assemblage considered in Example 6.1 using
the modified Newton-Raphson iteration. Use two equal load steps to reach the maximum load
application.

In the modified Newton-Raphson iteration, we use (6.11) and (6.12) but evaluate new
tangent stiffness matrices only at the beginning of each step. Hence, the iterative equations are
in this analysis

('Ka + er) Au(i) — H—AtR — t+Ang—l) — I+AtF2i—l)

r+Atu(i) = r+Axu(i—1) + Au(i)

(@
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with t+80,0) = 1
HVEO) = 1F HAEO) = 1f

'CA tCA

‘K, = ; g, = 4

L, b L,

where c {*‘ E lf sect}on is elast.lc
= Er if section is plastic

For an elastic section,

1+A:F(i—-1) = EA:+A1E(i—1)

for a plastic section,
t+AtF(l'—1) = A[ET(H-AtE(i—l) — Ey) + O'y]

and the strains in the sections are

Chap. 6

(b)

©

(@

C]

t+4r,,G~1)
t+AL _(i—1) = u
€l L
t4+ A, ,(i~1)
erar - - W
€, A
In the first load step, we have t = 0 and Az = 1. Thus, the application of the relations in (a) to
(e) gives
t=1:
(K. + °K;) Au® = 'R — 'F® — 1FY
2 X 10°
D = ——— = 6,6667 X 1072
Au 107G+ 3 6 07 cm
i=1 ® =140 + Ay® = 6.6667 X 107> cm
1,
Te) = T 6.6667 X 107% < € — section a is elastic
1,,(1) '
lef) = Z— = 1.3333 X 10~ < ¢, — section b is elastic
b
TP = 6.6667 X 10° N
IF{" = 13333 X 10*N
K. + °K,) Au® = 'R — 'F{ — 'FY
=0
-~ Convergence is achieved in one iteration
'u = 6.6667 X 107% cm
t=2
lKa = E; 1 b = E—A
L, L,

ZF,(P) — lFa; ZF(,?) — lFb
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(K, + 'K,) AuV = R — F® — 2F©®
(4 X 104) - (66667 X 103) - (13333 X 104)

(1) —
Au 1075 + 9
= 6.6667 X 1073 cm
(=1 2u® =20 4+ Ay® = 1.3333 X 10~2 cm

2e’ = 1.3333 X 1072 < ¢, —> section q is elastic
26’ = 26667 X 107 > ¢, — section b is plastic
2FP = 13333 X 10* N

2D = [ExCe,® ~ g) + 0]A = 2.0067 X 10* N

(K. + 'K,) Au® =R — FP — 2F)
Au® =22 X 1072 cm

GE=2) 2@ = 24D 4 Ay® = 15533 X 102 cm
2@ = 15533 X 10~ < ¢,
2ef) = 3.1066 X 107 > ¢,

& 2FP = 15533 X 10N
PP = 20111 X 10* N

(K. + 'K,) Au® = 2R — FP ~ 2FP

Au® = 14521 X 107* cm

The procedure is repeated, and the results of successive iterations are tabulated in the accompa-
nying table.

i Au (cm) 24D (cm)

3 14521 X 1073 1.6985 X 1072

4 9.5832 X 107* 1.7944 X 1072

5 6.3249 X 10~* 1.8576 X 10~

6 4.1744 X 1074 1.8994 X 1072

7 2.7551 X 10~* 1.9269 X 102

After seven iterations, we have

2u =M = 19269 X 102 cm

6.2 FORMULATION OF THE CONTINUUM MECHANICS
INCREMENTAL EQUATIONS OF MOTION

The objective in the introductory discussion of nonlinear analysis in Section 6.1 was to
describe various nonlinearities and the form of the basic finite element equations that are
used to analyze the nonlinear response of a structural system. To show the procedure of
analysis, we simply stated the finite element equations, discussed their solution, and gave a
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physical argument why the nonlinear response is appropriately predicted using these equa-
tions. We demonstrated the applicability of the approach in the solution of two very simple
problems merely to give some insight into the steps of analysis used. In each of these
analyses the applicable finite element matrices and vectors were developed using physical
arguments.

The physical approach of analysis used in Examples 6.3 and 6.4 is very instructive and
yields insight into the analysis; however, when considering a more complex solution, a
consistent continuum-mechanics-based approach should be employed to develop the gov-
erning finite element equations. The objective in this section is to present the governing
contintum mechanics equations for a displacement-based finite element solution. As in
Section 4.2.1, we use the principle of virtual work but now include the possibility that the
body considered undergoes large displacements and rotations and large strains and that the
stress-strain relationship is nonlinear. The governing continuum mechanics equations to be
presented can therefore be regarded as an extension of the basic equation given in (4.7). In
the linear analysis of a general body, the equation in (4.7) was used as the basis for the
development of the governing linear finite element equations [given in (4.17) to (4.27)].
Considering the nonlinear analysis of a general body, after having developed suitable
continuum mechanics equations, we will proceed in a completely analogous manner to
establish the nonlinear finite element equations that govern the nonlinear response of the
body (see Section 6.3).

6.2.1 The Basic Problem

In Section 6.1 we underlined the fact that in a nonlinear analysis the equilibrium of the body
considered must be established in the current configuration. We also pointed out that in
general it is necessary to employ an incremental formulation and that a time variable is used
to conveniently describe the loading and the motion of the body.

In the development to follow, we consider the motion of a general body in a stationary
Cartesian coordinate system, as shown in Fig. 6.2, and assume that the body can experience
large displacements, large strains, and a nonlinear constitutive response. The aim is to
evaluate the equilibrium positions of the complete body at the discrete time points
0, Az, 2 Az, 3 At, . . ., where At is an increment in time. To develop the solution strategy,
assume that the solutions for the static and kinematic variables for all time steps from time
0 to time ¢, inclusive, have been obtained. Then the solution process for the next required
equilibrium position corresponding to time ¢ + At is typical and is applied repetitively until
the complete solution path has been solved for. Hence, in the analysis we follow all particles
of the body in their motion, from the original to the final configuration of the body, which
means that we adopt a Lagrangian (or material) formulation of the problem. This approach
stands in contrast to an Eulerian formulation which is usually used in the analysis of fluid
mechanics problems, in which attention is focused on the motion of the material through
a stationary control volume. Considering the analysis of solids and structures, a Lagrangian
formulation usually represents a more natural and effective analysis approach than an
Eulerian formulation. For example, using an Eulerian formulation of a structural problem
with large displacements, new control volumes have to be created (because the boundaries
of the solid change continuously), and the nonlinearities in the convective acceleration
terms are difficult to deal with (see Section 7.4).
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Configuration corresponding to
variation in displacement éu

on t+Aty
/ 5U1
______ R ou = |6up
Oug

P(t+Atx1' t+Atx2' t+Atx3)

Configuration at time t+At
Surface area f+A'S
Volume t*+Aty

Configuration at time t
Surface area 'S
Volume vV

P(°X1, on, oX3)

™~ Configuration at time 0
Surface area °S

Volume °V
X2
t+Atx,. - Oxl_ + t-o-Atu’
t. 0 t :
0, t, t+AL Xj="X; + Uj i=1,23
xi{or “xq, 'xq, x1)
1 1 X1 1 f+Atx,_= fxi +U;

Figure 6.2 Motion of body in Cartesian coordinate frame

In our Lagrangian incremental analysis approach we express the equilibrium of the
body at time ¢ + Ar using the principle of virtual displacements. Using tensor notation (see
Section 2.4), this principle requires that

f '+A'Tij 81+Aleij dr+ArV — z+Ar% (6.13)
t+ Ay
where
**Atq; = Cartesian components of the Cauchy stress tensor (forces per unit areas in
the deformed geometry)
1{ déu; du; . . .
Srracey = §<0'TA';{ 6'—”7;) = strain tensor corresponding to virtual
j i
displacements

du; = components of virtual displacement vector imposed on configuration at
time ¢ + At, a function of “**x;,j = 1,2, 3

x; = Cartesian coordinates of material point at time ¢ + Az

*&Y = yolume at time ¢ + At

t+Ar
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and

r+Argt = t+At,fiBaui dr+ArV + f r+Axf.iS au.'s dx+ArS (614)
1+A1V I+A1Sf

where

++ar8 = components of externally applied forces per unit volume at time ¢ + Atz
a5 = components of externally applied surface tractions per unit surface area at time ¢t + At
*+Arg. = surface at time ¢ + At on which external tractions are applied
duf = 8u; evaluated on the surface '*4'S; (the Su, components are zero at and corresponding to the
prescribed displacements on the surface **4‘S,)

In (6.13), the left-hand side is the internal virtual work and the right-hand side is the
external virtual work. The relation is derived as in linear infinitesimal displacement analysis
(see Example 4.2), but the current configuration at time ¢ + At (with the stresses and forces
at that time) is used. Hence, the derivation of (6.13) is based on the following equilibrium

equations,
Within “**V fori = 1, 2, 3,
Oy omgp =0 sumoverj = 1,2,3 (6.152)
at+Arxj i um over j s &y .
and on the surface **4'S;, for i = 1, 2, 3,
t+Al,nj x+Arnj = r+Axf.iS' sum overj = 1, 2, 3 (615b)

where the **‘n; are the components of the unit normal to the surface ‘* 'Sy at time t + At.

As shown in Example 4.2, the equation (6.15a) is multiplied by arbitrary continuous
virtual displacements u; that are zero at and corresponding to the prescribed displace-
ments. The integration of the expression obtained from (6.15a) over the volume at time
t+ At and the use of the divergence theorem and (6.15b) then directly yield the relation in
(6.13).

We note that the strain tensor components &.a.e; corresponding to the imposed
virtual displacements are like the components of the infinitesimal strain tensor, but the
derivatives are with respect to the current coordinates at time ¢ + At. The use of the strain
tensor &,+a.€y in (6.13) is the direct result of the transformation by the divergence theorem
used in the derivation of (6.13), and this strain tensor is obtained irrespective of the
magnitude of the virtual displacements.

However, we now recognize that the virtual displacements &u; may be thought of as
a variation in the real displacements ‘*4'y; (subject to the constraint that these variations
must be zero at and corresponding to the prescribed displacements). These displacement
variations result in variations in the current strains of the body, and we shall later, in
particular, use the variation in the Green-Lagrange strain components corresponding to éu
(see Example 6.10).

It is most important to recognize that the virtual work principle stated in (6.13) is
simply an application of the equation in (4.7) (used in linear analysis) to the body consid-
ered in the configuration at time t + At. Therefore, all previous discussions and results
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pertaining to the use of the virtual work principle in linear analysis are now directly
applicable, with the current configuration at time t + At being considered.’

A fundamental difficulty in the general application of (6.13) is that the configuration
of the body at time ¢ + At is unknown. This is an important difference compared with
linear analysis in which it is assumed that the displacements are infinitesimally small so that
in (6.13) to (6.15) the original configuration is used. The continuous change in the config-
uration of the body entails some important consequences for the development of an incre-
mental analysis procedure. For example, an important consideration must be that the
Cauchy stresses at time 1 + Ar cannot be obtained by simply adding to the Cauchy stresses
at time ¢ a stress increment that is due only to the straining of the material. Namely, the
calculation of the Cauchy stresses at time ¢ + Ar must also take into account the rigid body
rotation of the material because the components of the Cauchy stress tensor also change
when the material is subjected to only a rigid body rotation. '

The fact that the configuration of the body changes continuously in a large deforma-
tion analysis is dealt with in an elegant manner by using appropriate stress and strain
measures and constitutive relations, as discussed in detail in the next sections.

Considering the discussions to follow, we recognize that a difficult point in the presen-
tation of continuum mechanics relations for general large deformation analysis is the use of
an effective notation because there are many different quantities that need to be dealt with.
The symbols used should display all necessary information but should do so in a compact
manner in order that the equations can be read with relative ease. For effective use of a
notation, an understanding of the convention employed is most helpful, and for this purpose
we summarize here briefly some basic facts and conventions used in our notation.

In our analysis we consider the motion of the body in a fixed (stationary) Cartesian
coordinate system as displayed in Fig. 6.2. All kinematic and static variables are measured
in this coordinate system, and throughout our description we use tensor notation.

The coordinates of a generic point P in the body at time 0 are °x;, %x,, %x3; at time ¢
they are ‘xi, 'x2, 'x3; and at time ¢ + Ar they are "*4'x;, "*4%x,, '*4x;, where the left
superscripts refer to the configuration of the body and the subscripts to the coordinate axes.

The notation for the displacements of the body is similar to the notation for the
coordinates: at time ¢ the displacements are ‘w;, i = 1, 2, 3, and at time ¢ + At the displace-
ments are ‘*&w;, i = 1, 2, 3. Therefore, we have

’x,- = Oxi + 'u,- }

Ay = Oy, AT, i=123 (6.16)

The increments in the displacements from time ¢ to time ¢ + Af are denoted as

i = :+Atui — fu; i=1273 (617)

During motion of the body, its volume, surface area, mass density, stresses, and strains
are changing continuously. We denote the specific mass, area, and volume of the body at
times 0, ¢, and t + Ar as "p, 'p, "*4p; PA, ‘A, "t4A; and °V, 'V, T4V, respectively.

Since the configuration of the body at time ¢ + At is not known, we will refer applied
forces, stresses, and strains to a known equilibrium configuration. In analogy to the notation

'We may imagine that in considering the moving body, a picture is taken at time ¢ + Ar and then the
principle of virtual displacements is applied to the state of the body in that picture.
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used for coordinates and displacements, a left superscript indicates in which configuration
the quantity (body force, surface traction, stress, etc.) occurs; in addition, a left subscript
indicates the configuration with respect to which the quantity is measured. For example, the
surface and body force components at time ¢ + At, but measured in configuration 0, are
A5, S8, i = 1, 2, 3. Here we have the exception that if the quantity under consider-
ation occurs in the same configuration in which it is also measured, the left subscript may
not be used; e.g., for the Cauchy stresses we have

S
H'A'T:y = ;+g§Tij

In the formulation of the governing equilibrium equations we also need to consider
derivatives of displacements and coordinates. In our notation a comma denotes differenti-
ation with respect to the coordinate following, and the left subscript denoting time indicates
the configuration in which this coordinate is measured; thus we have, for example,

6'+A’u~
t+AL, — !
%u"j aox,-
8%%m
and M Xmn = Pz (6.18)

Using these conventions, we shall define new symbols when they are first encountered.

6.2.2 The Deformation Gradient, Strain, and Stress Tensors

We mentioned in the previous section that in a large deformation analysis special attention
must be given to the fact that the configuration of the body is changing continuously. This
change in configuration can be dealt with in an elegant manner by defining auxiliary stress
and strain measures. The objective in defining them is to express the internal virtual work
in (6.13) in terms of an integral over a volume that is known and to be able to incrementally
decompose the stresses and strains in an effective manner. There are various different stress
and strain tensors that, in principle, could be used (see L. E. Malvern [A], Y. C. Fung [A],
A. E. Green and W. Zerna [A], and R. Hill [A]). However, if the objective is to obtain an
effective overall finite element solution procedure, only a few stress and strain measures
need be considered. In the following we first consider the motion of a general body and
define kinematic measures of this motion. We then introduce appropriate strain and the
corresponding stress tensors. These are used later in the chapter to develop the incremental
general finite element equations.

Consider the body in Fig. 6.2 at a generic time ¢. A fundamental measure of the
deformation of the body is given by the deformation gradient, defined as®

2The deformation gradient is denoted as F in other books, but we use the notation § X throughout this text
because this symbol more naturally indicates that the differentiations of the coordinates ‘x; with respect to the
coordinates °x; are performed.
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’-a'xl a'xl a'xl_
% x s

a’xz a'xz a'xz

IX = —— —_— —_—
¢ Fx; Oxy P x; (6.19)
bOxl a°x2 6°x3
or X = (V'x7)7 (6.20)
where oV is the gradient operator
—i__
3%,
0
ov Sl h X7 = ['JC1 X2 ’JC3] (621)
9 X2
9
Laoxb

The deformation gradient describes the stretches and rotations that the material fibers have
undergone from time 0 to time . Namely, let d°x be a differential material fiber at time 0;
then, by the chain rule of differentiation, this material fiber at time ¢ is given by

d'x = ¢X d% (622)
Using chain differentiation, it also follows that
d°x = 9X d'x (6.23)
where 9X is the inverse deformation gradient. From (6.22) and (6.23) we obtain
d’x = (IX)(¢X) d°x (6.24)
and hence [because (6.24) must hold for any differential length d°x], we have
X = @¢x)! (6.25)

Therefore, the inverse deformation gradient %X is actually the inverse of the deformation
gradient ¢X.

An application of (6.18) is given by the evaluation of the mass density ‘p of the body
at time ¢, namely,

0

— P
= det (6X) (6.26)

‘P

We prove and illustrate this r¢lationship in the following examples.



504

Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap. 6

EXAMPLE 6.5: Consider the general motion of the body in Fig. 6.2 and establish that the mass
density of the body changes as a function of the determinant of the deformation gradient,

. °p

P~ et ¢X)

Any infinitesimal volume of material at time O can be represented using (see Fig. E6.5)

Time 0 dov

!
) ~
Y i datv
]
d 0;3 —y '/
4 -
X
d%, d 0%,
d'Rs Time t
x3
d t)?2 da'x 1
x
x
Figure E6.5 Infinitesimal volumes at times 0 and ¢
1 0
doil = 0 dsl; doiz = 1 dSz; d0i3 = 0 dS3
0 0 1
and do{’ = dS[ dSz dS3

Using (6.22), we have after deformation,
d'ii = 6X doii i= 1, 2, 3

where we note that of course the same deformation gradient applies to all material fibers of that
infinitesimal volume, and we obtain

d'V = (d'&, X d'%;) - d'%s
= (det §X) ds; ds; dss
= det {X d°V
But if we assume that no mass is lost during the deformation, we have

'pd'V = d°V

and hence, !
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EXAMPLE 6.6: Consider the element in Fig. E6.6. Evaluate the deformation gradient and the

mass density corresponding to the configuration at time ¢.
The displacement interpolation functions for this element were given in Fig. 5.4. Since the

%1, %x2 axes correspond to the r, s axes, respectively, we have

By = (1 + °x)(1 + °x); hy = 3(1 = %x)(1 + °x)
hy = 1(1 = °x)(1 — °xp); =11 + %) — %x2)
and 5"’:‘7‘1 =0+ ) 5"’0’;—21 = 301+ °x)
%:%(1 + %xy); 560};—22—‘—11(1 — ’x)
Tem g =tm) = -2+ %)

Thickness = 1 cm
Density at t=0is % Ar Ox,

1 2 il 1 V= 0.5 cm
! r
\ ii = 1¢em
a% | [ g% B
PN e S
2¢ I A -
m ! .
1
d% | dis
i

|——2 cm ———»{

Figure E6.6 Four-node element subjected to large deformations

4
Now we use = kzl e 'xf
and hence, e . é <-§ﬂ)' k
%% =1 \%;
The nodal point coordinates at time ¢ are
x1 =2 x} = 1.5; 53 = -1, %=1
xt=—1; x3 = —1; %t =1; v = —1
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Hence,
dx _ 1 0 0 0 0
- = Z[(l +%:)(2) = (1 + %x)(—1) = (1 = °x2)(—1) + (1 — °x2)(1)]
1 0
= 2(5 + %x2)
x1 1 0 ¥Fx, 1 0
—_— - — - +
and aoxz 4(1 + xl), aoxl 8(1 xz)
'x; 1
=30

so that the deformation gradient is
X = 1[(5 + o) (1+°x) ]
T 4lia + %) 39 + %x)
and using (6.26), the mass density in the deformed configuration is
= 32°%
P +%)0 + %) — (1 + %x)(1 + )

The deformation gradient is also used to measure the stretch of a material fiber and

the change in angle between adjacent material fibers due to the deformation. In this calcu-
lation we use the right Cauchy-Green deformation tensor,

§C = X7 §X 627)

We note that ¢C is, in general, not equal to the left Cauchy-Green deformation tensor,

¢B = X ¢X7 (6.28)

EXAMPLE 6.7: The stretch ‘A of a line element of a general body in motion is defined as
1\ = d's/d°s, where d% and d's are the original and current lengths of the line element as shown

in Fig. E6.7. Prove that

o Oxg, I3 A
x3, 3 A d's dté
oA
n 9
0 t,
/ n ty_d's d's
A= 5,
d% ds d%
] dox3 0,
i 00 - n
~——75
d°X2 ]
I'/do,ﬁ dVs
Ox2 % %%, %
9%y, Ox1,

Figure E6.7 Stretch and rotation of line elements
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A = (OnT(;C On)l/2 (a)

where °n is a vector of the direction cosines of the line element at time 0. Also, prove that
considering two line elements emanating from the same material point, the angle '9 between the
line elements at time ¢ is given by

cos ' = ——— (b)

where the hat denotes the second line element (see Fig. E6.7).

As an example, apply the formulas in (a) and (b) to evaluate the stretches of the specific
line elements d®s and d's shown in Fig. E6.6 and evaluate also the angular distortion between
them.

To prove (a), we recognize that

(d's)? = d'x7 d'x; d'x = {X d°%

so that using (6.27), d’s)? = d°%7 {C d°x
dO T dO
Hence, n2 = d:; 6C‘_if)§
) o _ d’x
and since n = -‘-i—og
we have ‘A = (°n” {C °n)'2

To prove (b) we use (2.50)
d'x7 d'& = (d's)(d'$) cos ‘6

doX7 ¢X7 X d°%
Hence, cos ' = ————-—— c
@) ©
Since {X = éf( (it is the deformation gradient at the location of the differential line elements),
we obtain from (c),
onT (;C Oﬁ
0080 = R

It should be noted that the relations in (a) and (b) show that when {C = I, the stretches
of the line elements are equal to 1 and the angle between line elements has not changed during
the motion. Hence, when the Cauchy-Green deformation tensor is equal to the identity matrix,
the motion could have been at most a rigid body motion,

If we apply (a) and (b) to the line elements depicted in Fig. E6.6, we obtain at °x; = 0,
%, = 0 (see Example 6.6)

c oL [25.25 7.25]
¢ 16 7.25 21.25
1 0
0, — . 0f —
" [0] " [1]
Hence, using (a), A = 1.256; A = 1152
and using (b), cos ‘0 = 0.313; 9 = 71.75°

Therefore, the angular distortion between the line elements d°s and d°§ due to the motion from
time 0 to time ¢ is 18.25 degrees.
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A most important property of the deformation gradient is that it can always be decomposed
into a unique product of two matrices, a symmetric stretch matrix §U and an orthogonal
matrix ¢R corresponding to a rotation such that

§X = (R U (6.29)

We can interpret (6.29), conceptually, to mean that the total deformation is obtained
by first applying the stretch and then the rotation. That is, we could write (6.29) also as
¢X = IR §U, where 1 corresponds to an intermediate (conceptual) time. Then we realize
that the decomposition is really an application of the chain rule ¢X = ;X §X, where
X = /R and {X = JU. However, the state corresponding to 7is only conceptual, and we
therefore usually use the notation in (6.29).

The relation in (6.29) is referred to as the polar decomposition of the deformation
gradient, and we prove and demonstrate this property in the following examples.

To simplify the notation in the following discussion of continuum mechanics relations,
we shall frequently not show the superscripts and subscripts ¢ and 0 but always imply them,
and when there is doubt, we shall also actually show them. For example, (6.29) is written
as X = RU.

EXAMPLE 6.8: Show that the deformation gradient X can always be decomposed as follows:
X =RU (@

where R is an orthogonal (rotation) matrix and U is a stretch (symmetric) matrix.
To prove the relationship in (a), we consider the Cauchy-Green deformation tensor C and
represent this tensor in its principal coordinate axes. For this purpose we solve the eigenproblem

Cp = Ap (b)
The complete solution of (b) can be written as (see Section 2.5)
CP = PC’

where the columns of P are the eigenvectors of C, and C’ is a diagonal matrix storing the
corresponding eigenvalues. We also have

P’CP = C' ©
and C' is the representation of the Cauchy-Green deformation tensor in its principal coordinate

axes. The representation of the deformation gradient in this coordinate system, denoted as X', is
similarly obtained

X' = P’XP d

where we note that (c) and (d) are really tensor transformations from the original to a new
coordinate system (see Section 2.4).
Using these relations and C = XX, we have

CI = X!TX!
and we note that the matrix

R =X'(C)™"



Sec. 6.2 Continuum Mechanics Incremental Equations of Motion 509

is an orthogonal matrix; i.e.,, R’7R’ = 1. Hence, we can write
X' = RU (e)
where U = (C)V?

and to evaluate U’ we use the positive values of the square roots of the diagonal elements of C’.
The positive values must be used because the diagonal values in U’ represent the stretches in the
new coordinate system,

The relation in (e) is the decomposition of the deformation gradient X’ into the product of
the orthogonal matrix R’ and the stretch matrix U’. This decomposition has been accomplished
in the principal axes of C but is also valid in any other (admissible) coordinate system because
the deformation gradient is a tensor (see Section 2.4). Indeed, we can now obtain R and U
directly corresponding to the decomposition in (a); i.e.,

R = PR'P’
U =PU'P

where we used the inverse of the transformation employed in (d).

EXAMPLE 6.9: Consider the four-node element and its deformation shown in Fig. E6.9.
(a) Evaluate the deformation gradient and its polar decomposition at time ¢. (b) Assume that the
motion from time ¢ to time # + At consists only of a counterclockwise rigid body rotation of
45 degrees. Evaluate the new deformation gradient.

Time t

*2 Time 0

N

s 30°
= ]
= 4 |

Figure E6.9 Four-node element subjected to stretching and rotation

To evaluate the deformation gradient at time #, we can here conveniently use X = R3U,
where the hypothetical (or conceptual) configuration 7 corresponds to the stretching of the fibers

only. Hence,
V3 -1 4 0
o |2 2 | I ]
Rl ovaf o O s
2 2 2
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2 3

x=|V3 4

and 2 3V3
3 a4

Of course, the same result is also obtained by writing ‘x; in terms of ®x;, i = 1,2;j = 1,2, and
using the definition of ¢X given in (6.19).

Let us next subject the element to the counterclockwise rotation of 45 degrees. The
deformation gradient is then

2 3
gy = [cos 45° —sin 45°] V3 4
sin 45°  cos45°]{2  3V3

3 4

2V3-2  3+3V3
L 3 4

Va2|2V3+2  -3+3V3
3 4

The proof in Example 6.8 also indicates how any deformation gradient can be decom-
posed into the product in (6.29). Assume that X is given and we want to find R and U; then
we may calculate C = X”X = U? and, using (2.109), we have (for n = 2 or 3), U =

" VX pip? with Cp: = A,p:.. With U given, we obtain R from R = XU,

The preceding relations can now be used to evaluate additional kinematic relations
that describe the motion of the body. That is, it can be proven (see Exercise 6.7) that we also
have

X = VR (630
where V is also a symmetric matrix
V = RUR? (6.31)

We refer to U as the right stretch matrix and to V as the left stretch matrix.
Example 6.8 shows that we have the spectral decomposition of U,

U = R,AR? 632)

Physically, A corresponds to the principal stretches and R, stores the directions of these
stretches, with the rigid body rotation removed since this rotation appears in R. (In Exam-
ple 6.8, the matrix P is equal to R;.) We also have

V = R:ARE (6.33)

We note that R stores the base vectors of the principal stretches in the stationary
coordinate system x;.

¥ Note that since we can write (6.30) as §X = {V§R, conceptually, the fibers can be thought of as being first
rotated and then stretched [in contrast to the conceptual interpretation of (6.29)].
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To proceed further with our description of the motion of the material particles in the
body, we consider next the time rates of change of the quantities defined above. For this
development we define

R = O:R (6.35)
I-{L =R (6.36)
I.{E = Re{de (6.37)

where g, ), and ) are skew-symmetric spin tensors, and clearly, using (6.34),
Q= RE(ﬂE - ﬂL)RE (6-38)

The velocity gradient L is defined as the gradient of the velocity field with respect to
the current position “x; of the material particles,

Iy
L= [a—“] (6.39)
d Xj
or L = XX! \ (6.40)

The symmetric part of L is the velocity strain tensor D (also called the rate-of-deformation
tensor or stretching tensor), and the skew-symmetric part is the spin tensor W (also called
the vorticity tensor). Hence,

L=D+W (6.41)
Using the polar decomposition of X we obtain from (6.40),
= IRWU! + U"'O)R? (6.42)
W = Qg + \ROU! - U'OR” (6.43)
Substituting for U from (6.32), we can write
D = R:D:R} (6.44)
W = R:W:R] (6.45)
where D: = AA' + LAT'QA — AQATY (6.46)
We = Q¢ — J(AT'QLA + AQATY 6.47)
Hence, we obtain for the elements of A,
[Alew = AfDelee 1o sum on e (6.48)
where the A, are the stretches, and for the elements of €2, and g, assuming that A, # Ag,
[ = 33255 D:l (649)
A+ AL

[Qeles = [Welag + [DE]aa (6.50)

/\2
We note that D and W are the velocity strain and spin tensors referred to the principal axes
of the deformation at time ¢. Hence, by representing the velocity strain and spin tensors in
the basis given by Rg, we obtain relationships that we can use directly to evaluate the
components of A, Q;, and Q.
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We now want to define strain tensors that are valuable in finite element analysis. The
Green-Lagrange strain tensor ¢e€ is defined as

de = (R[3(A? — DKR] (6.51)
The Hencky (or logarithmic) strain tensor is defined as
E¥ = R (In°A){R]I (6.52)

We note that since §R does not enter the definitions in (6.51) and (6.52), both strain tensors
are independent of the rigid body motions of the particles.

The Green-Lagrange strain tensor is frequently written in terms of the right stretch
tensor ¢U; that is, using (6.51), we obtain

de = 3[R ‘A JRD(RL'A JR]) — 1]
(

00— 1) (653)

Also, we can write the Green-Lagrange strain tensor in terms of the Cauchy-Green defor-
mation tensor,

de = LU RT4R U — 1)
(6.54)
=3(6C-1)

Furthermore, evaluating the components in terms of displacements [i.e., using (6.16) and
(6.19) in (6.54)], we have,

sy = 5(@u; + Swi + Suni b, ) (6.55)

We should note that in the definition of the Green-Lagrange strain tensor, all derivatives are
with respect to the initial coordinates of the material particles. For this reason, we say that
the strain tensor is defined with respect to the initial coordinates of the body. Also note that,
although only up to quadratic terms of displacement derivatives appear in (6.55), this is the
complete strain tensor; i.e., we have not neglected any higher-order terms.

The Green-Lagrange and Hencky strain tensors are clearly of the general form

E, = R.g(A)R] (6.56)

where g(A) = diag [g(A;)]. Hence, the rate of change of the strain tensors can be written
as

E, = R.E.R] 657
where we have
E. = Ag'(A) + Qug(A) — (A, (6.58)
Expanding this equation, we can identify the components of E, as
' [Eiles = YedDeles 6.59)
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where for the Green-Lagrange strain tensor,

Yap = Aalg (6.60)
and for the Hencky strain tensor,
1 if Ay = Ag
Yoo =] 2Aehs 1 A8 otherwise (6.61)
A= AL A,

Using (6.57) and (6.59), we can now establish an important relationship between the time
rate of change of the Green-Lagrange strain tensor §€ and the velocity strain tensor ‘D.
Using (6.57), (6.59), (6.60), and (6.44), we obtain

SRT 4€ R = ‘A {REI'D {R:'A (6.62)
and hence, using (6.32) and (6.34),

¢€ = ¢X"'D X
(6.63)
D = OXT ¢¢ 9X
or in component form (with super- and subscripts)
(;fy = lem.i len.j [Dmn
(6.64)
'Dmn = exi.m ?xj,n 0’511

Of course, we can obtain the same result, but with less insight, by simply differentiat-
ing the Green-Lagrange strain tensor with respect to time,

§€ = (X7 4X + §XT¢X) (6.65)

Using (6.40) and (6.41) to substitute into (6.65), we directly obtain (6.63). We demonstrate
this derivation for virtual displacement increments, or variations in the current displace-
ments, in the following example.

EXAMPLE 6.10: Consider a body in its deformed configuration at time ¢ (see Fig. E6.10). The
current cootrdinates of the material particles of the body are 'x;, i = 1, 2, 3, and the current
displacements are ‘u; = ‘x, — %x;.

Assume that a virtual displacement field is applied, which we denote as u; (see
Fig. E6.10). This virtual displacement field can be thought of as a variation on the current
displacements; hence, we may write du; = 8'u; However, the variation on the current displace-
ments must correspond to a variation on the current Green-Lagrange strain components, 8 €,
and also to a small strain tensor 8¢, referred to the current configuration. Evaluate the compo-
nents 8)¢; and show that

8651‘1' = Otxm,i Otxn,j atemn (a)
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X3

dashed line
shows éu imposed
onto configuration
attime t

X1
P(°X1, °X2, 0X;‘;)

Time 0

Figure E6.10 Body at time ¢ subjected to virtual displacement field given by & u. Note that
Su is a function of ’x;, i = 1,2,3, and we can think of du; as a variation on “u,.

1
where O1my = —(

2
We use the definition of the Green-Lagrange strain in (6.54) to obtain
&e = 3[(BXT)(X) + (XT)&X)] (b)
odu;  déu,
x;  'x2
du = | ddu, 0ddu,
dx,  Ox;

o8u,, 68u,,>
— +
o' xp 0 X

Let us define Su to be

then 86X = u X
and hence (b) can be written as
8de = F[X(B)7 6X + $XT(8,u)iX]
= ¢X"{3[(Bw)" + su]KX
= X7 §e ¢X

which is (a) in matrix form.

Note that a simple closed-form relationship cannot be established between the time
rate of change of the Hencky strain tensor and the velocity strain tensor [because of the
complex expression in (6.61)]. We shall use the Hencky strain measure only later for large
strain inelastic analysis, and the appropriate relationships will then be evaluated based on
work conjugacy (see Section 6.6.4).
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However, we shall use the Green-Lagrange strain tensor frequently and now want to
define the appropriate stress tensor to use with this strain tensor. The stress measure to use
is the second Piola-Kirchhoff stress tensor ¢S, which is work-conjugate with the Green-
Lagrange strain tensor.*

Consider the stress power per unit reference volume 'J ‘t - ‘D,® where ‘7 is the Cauchy
stress tensor and 'J = det {X. Then the second Piola-Kirchhoff stress tensor §S is given by

Jir D =S~ jé (6.66)
To find the explicit expression for ¢S, we substitute from (6.63) to obtain
Jiz D = ¢S (§X"'D ¢X) (6.67)

Since this relationship must hold for any ‘D, we have®

°p
88 = Lox rpoxr
P

(6.68)
H
= L gx 48 gxr
P
or in component forms
0
6SU = ,_p exi,m 9-1}',71 tTmn
(6.69)

¢
p
Tn = 0—'p 6xm,i (;-ij (;Su

There has been much discussion about the physical nature of the second Piola-
Kirchhoff stress tensor. However, although it is possible to relate the transformation on the
Cauchy stress tensor in (6.68) to some geometry arguments as discussed in the next
example, it should be recognized that the second Piola-Kirchhoff stresses have little physical
meaning and, in practice, Cauchy stresses must be calculated.

*We use extensively in this book the second Piola-Kirchhoff stress tensor ¢S defined by (6.66) and (6.68).
The first Piola-Kirchhoff stress tensor is given by ¢S §X7 (or the transpose thereof). In addition, we also have the
Kirchhoff stress tensor given by *J 'z (see, for example, L. E. Malvern [A]).

“Note that here and in the following we use the notation that with a and b second-order tensors we have
a-b = a;b; [sum over all i, j; see (2.79)].

Here we use ¢S + ((X” ‘D ¢X) = (§X ¢S ¢X”) - ‘D, as can be easily proven by writing the matrices in
component forms (see Exercise 2.14).



516

Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap. 8

EXAMPLE 6.11: Figure E6.11 shows a generic body in the configurations at times 0 and 7. Let
d'T be the actual force on a surface area d'S in the configuration at time ¢, and let us define a
(fictitious) force

Px;
d°T = X d'T; %X = [a_i,] @)

which acts on the surface area d°S, where d°S has become d'S and X is the inverse of the
deformation gradient, {X = §X~'. Show that the second Piola-Kirchhoff stresses measured in
the original configuration are the stress components correspondmg to d°T.

Let the unit normals to the surface areas d°S and d'S be °n and ‘n, respectively. Force
equilibrium (of the wedge ABC in Fig. E6.11) in the configuration at time ¢ requires that

d'T ="'1"md's )
and similarly in the configuration at time 0
d°T = ¢S7°n d°S ©)

The relations in (b) and (c) are referred to as Cauchy’s formula. However, it can be shown that
the following kinematic relationship exists:

°p
‘md'S = -9X"’nd’s @
p
This relation is referred to as Nanson’s formula. Now using (a) to (d), we obtain

0
§87 °n d°S = 90X =7 -L9xTon a5
P

0 -
or <O‘ST — Lox it 9XT>°n d°s =0
P

9%, % A

t l
Configuration pid
attima=0 ( 1 4—‘
So d s

~—— 2P <—\
t
O, t
X1, X . .
v Configuration
attimest

Figure E6.11 Second Piola-Kirchhoff and Cauchy stresses in two-dimensional action
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However, this relationship must hold for any surface area and also any “interior surface area” that
could be created by a cut in the body. Hence, the normal °n is arbitrary and can be chosen to
be in succession equal to the unit coordinate vectors. It follows that

’p
éS = - O0X '3 X7

where we used the property that the matrices 7 and ¢S are symmetric.

Finally, we may interpret the force defined in (a). We note that the force d°T, which is
balanced by the second Piola-Kirchhoff stresses on the wedge ABC, is related to the actual force
d’T in the same way as an original fiber in d°S is deformed

d’x = X d'x

We may therefore say that in using (a) to obtain d°T, the force d*T is “stretched and rotated” in
the same way that d’x is stretched and rotated to obtain d°x.

We note that the components of the Green-Lagrange strain tensor and second Piola-
Kirchhoff stress tensor do not change when the material is subjected to only a rigid body
translation because such motion does not change the deformation gradient.

The definition of the second Piola-Kirchhoff stress tensor also implies that the compo-
nents do not change when the body being considered is undergoing a rigid body rotation.
Since the invariance of the Green-Lagrange strain tensor components and second Piola-
Kirchhoff stress tensor components in rigid body rotations is of great importance, we
consider these properties in the following four examples.

Of course, the invariance of the Green-Lagrange strain tensor components with
respect to rigid body rotations already follows from (6.53), since, as we pointed out earlier,
the rigid body rotation of the fibers expressed in the matrix ;R does not enter the definition
of (6.53). To gain further insight, let us consider the following example.

EXAMPLE 6.12: Show that the components of the Green-Lagrange strain tensor are invariant
under a rigid body rotation of the material.
Let the Green-Lagrange strain tensor components at time ¢ be given by

de = (X7 ¢X — I) (a)
where X is the deformation gradient at time ¢ corresponding to the stationary coordinate system
Xis i= 1, 2, 3.

Assume that the material is subjected to a rigid body rotation from time # to time ¢ + At.
Then corresponding to the stationary coordinate system x;, we have

HA({X = R (fX (b)
where R corresponds to the rotation, and then
'+-A(§€ = %(H—A(;XT '+A(§X - I) (C)

Substituting (b) into (¢) and comparing the result with (a), we obtain

t+At . —
0€ = o€
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EXAMPLE 6.13: A four-node element is stretched until time ¢ and then undergoes without
distortion a large rigid body rotation from time ¢ to time ¢ + At as depicted in Fig. E6.13. Show
explicitly that for the element the components of the Green-Lagrange strain tensor at time ¢ and
time # + Az are exactly equal.

Attime t+ At

)4 |- Attime t

Undeformed
state attime 0

Figure E6.13 Element subjected to
- large rigid body rotation after initial
2cm Tcm stretch

The Green-Lagrange strain components at time ¢ can be evaluated by inspection using
(6.51),

den = 0; de. = den =0
1]/3\?
. w381
=3
8
i 0
Hence, de = [5 O]
Alternatively, we can use (6.54), where we first evaluate the deformation gradient as in Exam-
ple 6.6:
S
° 0 1
. 2.0
Hence, cC=1:
ence ¢ [ 0 1]
30
e =
and as before, g€ 0 0] (@

After the rigid body rotation the nodal point coordinates are

NOdC x+Axxl r+A4rx2

1 3cos— 1~ 2sin 6 3sinf—1+2cos
2 —~1—2sin@ 2cosf— 1

3 -1 -1

4 3cos -1 3sing — 1
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Thus, using again the procedure in Example 6.6 to evaluate the deformation gradient, we obtain

[ (1 +°%)(Bcos@—1-~2sin6) | (1+°%)3cos8— 1 — 2sin )]
—(1 + %%)(—1 — 2sin 6) P41 = %) (=1 — 2sin )
~(1 = °x)(-1) (1= on)(-1)

o = L [ 20 m)@es0 1) P —(Ao)Beoso-1) .
0 4| (1+°%)3sin@—1+2cosh) ! (1+°)3sing— 1+ 2cos6)
—(1 + °x,)(2cos 0 — 1) P +(1 = %)(2cos 0 - 1)

—(1 = °x)(-1) =1 = %x)(=1)
| +(1 — °%)(3sin 6 — 1) b =1 +°%)@3sing - 1)

3 .
rarg = |2608 6 —sin 0]
or ¢ [% sinf@ cosé ©
In reference t6 (6.29) we note that this deformation gradient can be written as
r+A6X — ”'A:R (;U (d)
reap - |COS 6 —sin 0]_ ‘U = [% 0]
where R [sin 6 cosél 0 01

This decomposition certainly corresponds to the actual physical situation, in which we measured
a stretch in the °x; direction and then a rotation. Therefore, we could have established '+ %X using
(d) instead of performing all the calculations leading to (b) and thus (c)!

Using (d) and (6.27), we obtain

and thus using (6.54), we have

320
e = [ (’; 0] ©

Hence {€ in (a) is equal to '*%e in (¢), which shows that the Green-Lagrange strain components
did not change as a result of the rigid body rotation.

EXAMPLE 6.14: Show that the components of the second Piola-Kirchhoff stress tensor are
invariant under a rigid body rotation of the material.

Here we consider a stationary coordinate system x;, i = 1, 2, 3 and assume that the second
Piola-Kirchhoff stress components are given in ¢S. Let the Cauchy stress, deformation gradient,
and mass density at time ¢ be ‘7, ¢X, and ‘p. Hence,

°p
i8S = ; 9X 7 X7 (@

where 9X is the inverse deformation gradient.
If a rigid body rotation is applied to the material from time ¢ to time ¢ + At, the deforma-
tion gradient changes to

44X = R¢X
where R is an orthogonal (rotation) matrix, and hence
+8X = XR7 (b)
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Equations (a) and (b) show that
%
A8 = ; OXR7 +aqR X7 ©

During the rigid body rotation of the material, the stress components remain constant in the
rotating coordinate system. Hence the Cauchy stresses at time ¢ + At are in the fixed coordinate
system,

trle = R qRT @

Substituting from (d) into (c), we obtain
°p
HA&S == 9xT s (sz
p

which completes the proof. Note that the reason for the second Piola-Kirchhoff stress compo-
nents not to change is that the same matrix R is used in equations (b) and (d).

EXAMPLE 6.15: Figure E6.15 shows a four-node element in the configuration at time 0. The
element is subjected to a stress (initial stress) of °7;,. Assume that the element is rotated in time
0 to time At as a rigid body through a large angle 6 and that the stress in a body-attached
coordinate system does not change. Hence, the magnitude of 7, shown in Fig. E6.15 is equal
to °71;. Show that the components of the second Piola-Kirchhoff stress tensor did not change as
a result of the rigid body rotation.

Configuration at Figure E6.15 Four-node element with
time = At initial stress subjected to large rotation

Atz
/ "

1

atg. T

F-y

Configuration at
l‘——z ecm—= time=0

The second Piola-Kirchhoff stress tensor at time O is equal to the Cauchy stress tensor
because the element deformations are zero,

oe o’1'11 0
6S = [0 0] (@

The components of the Cauchy stress tensor at time Af expressed in the coordinate axes °x;, °n

are
Mg — [cos # —sin 0] [A"T'u 0][ cos @ sin 0] o
sin® cos @ 0 O]L—-sinf® cos@
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This transformation corresponds to a second-order tensor transformation of the components gy
from the body-attached coordinate frame %%, %, to the stationary coordinate frame °x,, °x,
(see Section 2.4).

The relation between the Cauchy stresses and the second Piola-Kirchhoff stresses at time
At is, according to (6.68),

“p
T g BX S X ©

where in this case #p/°p = 1. The deformation gradient can be evaluated as in Example 6.6,
where we note that the nodal point coordinates at time ¢ are

8yl =2cos @ — 1 — 2sin 6; Axl=2sin6—1+ 2cos @
832 = —1 — 2 sin 6; %%} =2cos §— 1

A3 = 1. A3 = —1

Sxt =2cos @~ 1; “xf=2sin 6 — 1

Hence, using the derivatives of the interpolation functions given in Example 6.6, we have

[ (1 + °,)(2cos § — 1 — 2 sin 6) ; (14 °)(2cos 8 — 1 — 2 sin @)]
—(1 + %) (—1 — 2 sin 6) i+ = %x)(—1 — 2sin 6)
—'(1 - ox2)(_1) § "(1 - oxl)(_l)
ax =1 [FU - 0)@cs6-1) LT3 )Ces 67 )
T4 ] Q+%)Q2sin@—1+2cosB) : (1+°%)(2sind— 1+ 2cos )
~(1 + °x))(2 cos § — 1) L (1~ %x)(2 cos 6 ~ 1)
-1 - ox2)(_1) E —(1 = %)(-1)
[+(1 — %°x2)(2sin @ — 1) V=1 +%)(2sing — 1) i
sy _ | COS @ —sin 6
or iX = [ sin # cos 0] @

Substituting now from (b) and (d) into (c), we obtain

8z 0
48 = [ 0“ 0] @)

But, since 27, is equal to °7,,, the relations in (a) and () show that the components of the second
Piola-Kirchhoff stress tensor did not change during the rigid body rotation. The reason there is
no change in the second Piola-Kirchhoff stress tensor is that the deformation gradient corre-
sponds in this case to the rotation matrix that is used in the transformation in (b).

It is important to note that in these examples we consider the coordinate system to
remain stationary and the body of material to be moving in this coordinate system. This
situation is of course quite different from expressing given stress and strain tensors in new
coordinate systems.

The above relationships between the stresses and strains show that, using (6.69) for
the stress transformation and (6.64) for the strain transformation (but, as in Example 6.10,
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using variations in strains rather than time derivatives), we obtain

1
_ P
J‘ Ty Ot d'V = J‘ (% 8Sij 6Xk,i dxl.j (gxm,k exn.l 56€mn) da'v
ty v

= J‘ 0£ 6S,_, 8mi anj af)emn d‘V = JO 6S¢J 666,‘_,‘ dOV (670)
wop v

where we have also used that ‘p d'V = °p d°V.

Of course, (6.70) follows from the definition of the second Piola-Kirchhoff stress
tensor in (6.66), and indeed (6.70) is but (6.66) in integrated form over the volume of the
body (and written for strain variations).

We have used in (6.70) a specific Cartesian coordinate system and should note that
(6.70) is of course in component form a general tensor equation. Other suitable coordinate
systems could also be chosen [see (6.178)].

Equation (6.70) is the basic expression of the total and updated Lagrangian formula-
tions used in the incremental analysis of solids and structures, which we consider next. An
important aspect of (6.70) is that in the final expression the integration is performed over
the initial volume of the body. Instead of the initial configuration, any other previously
calculated configuration could be used, with the second Piola-Kirchhoff stresses and Green-
Lagrange strains then defined with respect to that configuration. More specifically, if the
configuration at time 7 is to be used, 7 < ¢, and we denote the coordinates at that time by
"x;, then we would employ

J tTmn slemn dtV = J ‘:Slj afrey dTV (671)
ty Ty

where the second Piola-Kirchhoff stresses ;S; and Green-Lagrange strains fe; are defined
as previously discussed, but instead of °x;, the coordinates "x; corresponding to the
configuration at time 7 are used. We shall employ the relations in (6.70) and (6.71) often
in the next sections.

Note that so far we have defined the stress and strain tensors that we shall employ; the
use of appropriate constitutive relations is discussed in Section 6.6.

6.2.3 Continuum Mechanics Incremental Total and Updated
Lagrangian Formulations, Materially-Nonlinear-Only Analysis

We discussed in Sections 6.1 and 6.2.1 the basic difficulties and the solution approach when
a general nonlinear problem is analyzed, and we concluded that, for an effective incremen-
tal analysis, appropriate stress and strain measures need to be employed. This led in
Section 6.2.2 to the presentation of some stress and strain tensors that are employed
effectively in practice, and then to the principle of virtual displacements expressed in terms
-of second Piola-Kirchhoff stresses and Green-Lagrange strains. We now use this fundamen-
tal result in the development of two general continuum mechanics incremental formulations
of nonlinear problems. We consider in this section only the continuum mechanics equations
without reference to a particular finite element solution scheme. The use of the results and
the generalization for incremental formulations with respect to general finite element
solution variables are then discussed in Section 6.3.1 (and the sections thereafter).
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The basic equation that we want to solve is relation (6.13), which expresses the
equilibrium and compatibility requirements of the general body considered in the
configuration corresponding to time ¢ + At. [The constitutive equations also enter (6.13),
namely, in the calculation of the stresses.] Since in general the body can undergo large
displacements and large strains and the constitutive relations are nonlinear, the relation in
{(6.13) cannot be solved directly; however, an approximate solution can be obtained by
referring all variables to a previously calculated known equilibrium configuration and
linearizing the resulting equation. This solution can then be improved by iteration.

To develop a geverning linearized equation, we recall that the solutions for times 0,
At, 2At, . . ., t have already been calculated and that we can employ (6.70) or (6.71) and
refer the stresses and strains to one of these known equilibrium configurations. Hence, in
principle, any one of the equilibrium configurations already calculated could be used. In
practice, however, the choice lies essentially between two formulations which have been
termed total Lagrangian (TL) and updated Lagrangian (UL) formulations (see K. J. Bathe,
E. Ramm, and E. L. Wilson [A]). The TL formulation has also been referred to as the
Lagrangian formulation. In this solution scheme all static and kinematic variables are
referred to the initial configuration at time 0. The UL formulation is based on the same
procedures that are used in the TL formulation, but in the solution all static and kinematic
variables are referred to the last calculated configuration. Both the TL and UL formulations
include all kinematic nonlinear effects due to large displacements, large rotations, and
large strains, but whether the large strain behavior is modeled appropriately depends on the
constitutive relations specified (see Section 6.6). The only advantage of using one formula-
tion rather than the other lies in its greater numerical efficiency.

Using (6.70), in the TL formulation we consider the basic equation

Jo A4Sy 8% dOV = TTAGR 6.72)
\'4
whereas in the UL formulation we consider
J‘ '+A:S,:,- 8‘+A;€1j d'v = r+A:gt (673)
tv

in which “*4QR is the external virtual work given in (6.14). This expression also depends
in general on the surface area and the volume of the body under consideration. However,
for simplicity of discussion we assume for the moment that the loading is deformation-
independent, a very important form of such loading being concentrated forces whose
directions and intensities are independent of the structural response. Later we shall discuss
how to include deformation-dependent loading in the analysis [see (6.83) and (6.84)].

Tables 6.2 and 6.3 summarize the relations used to arrive at the linearized equations
of motion about the state at time ¢ in the TL and UL formulations. The linearized equi-
librium equations are, in the TL formulation,

J OCijrs 0€rs 6031'/' dOV + J 6Sy 60'”1] doV = H’A’% - J (;S,j 603(; dOV (6.74)
Oy Oy Oy
and in the UL formulation

J tCijrs 1€rs 8teU d'v + J 'Tij 61"]:] d'v = R — J 1y spe,j dav (675)
ty ty ty
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TABLE 6.2 Continuum mechanics incremental decomposition: Total Lagrangian formulation

1. Equation of motion

j ’“%S,-,-S ,+A(§Ei,' d°V = AR
where v

0
P 0 r+Ar 1 A Ar
Sy = o B Xim T T 1+ 8% n5 5 ey = 83 C uy; + ¥u + M ue ¥ )

2. Incremental decompositions

(a) Stresses
Sy = §Sy + oSy
(b) Strains
ey = dey + o€y o€ F o€y + oMy
o€y = %(Oui,j + oWy + I(;uk_i ok, ; t ol duk,j)l; oMy = SoMki ok, j

Initial displacement effect

3. Equation of motion with incremental decompositions
Noting that &*%e; = dve; the equation of motion is

j os'll'aoel'j da°v + j 651_,307},, d°V = AR — J’ dsuaoeg d’v
Oy Oy Oy

4. Linearization of equation of motion
Using the approximations ¢Sy = oCy»s o€rs, So€; = Soey, wWe obtain as approximate equation of motion:

j 0Cijrs 0€rsBoey d°V + j §8;80my d°V = AR — j 8Sy0oe; d°V
oy oy oy

TABLE 6.3 Continuum mechanics incremental decomposition: Updated Lagrangian formulation

1. Eguation of motion
f ‘+A:SU8+Af€ij d'v = r+At%
v

where

‘P

—_ . —_ 1
Sy = +aip v+ aiXim " T =+ A%, n3 &+he; = 83 G, j + i t e i ik, ;)
2. Incremental decompositions
(a) Stresses
8IS, = try + .Sy note that {Sy; = ‘7

(b) Strains

'+A{E.'j = €5 € = €yt My

=1 . =1
ey = 5w, ; + 0, My = 3k, i, j

3. Equation of motion with incremental decompositions
The equation of motion is

J ,S,~j8,e.<j a'v + j ’7',:,'8,1’,-_,' d'y = R — J '7'.-,-8,8;,- av
v v v

4. Linearization of equation of motion
Using the approximations Sy = ;Cyrs €, 8€; = ey, we obtain as approximate equation of motion:

f (Cs €ribiey d'V + f By AV = G, j ey d'V
lv IV lv
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where oC;,s and ,Cy,, are the incremental stress-strain tensors at time ¢ referred to the
configurations at times O and ¢, respectively. The derivation of cCys and ,Cy,, for various
materials is discussed in Section 6.6. We also note that in (6.74) and (6.75) ¢S;; and ‘7; are
the known second Piola-Kirchhoff and Cauchy stresses at time ¢; and oe;;, o7 and ;e;;, 7
are the linear and nonlinear incremental strains which are referred to the configurations at
times 0 and ¢, respectively.

Let us consider in more detail the steps performed in Table 6.2. The steps in Table 6.3
are performed analogously.

In step 2, we incrementally decompose the stresses and strains, which is allowed
because all stresses and strains, including the increments, are referred to the original (same)
configuration. Also note that we obtain the incremental Green-Lagrange strain compo-
nents in Table 6.2 by simply using o€; = ‘*%4€; — (€, and expressing ‘*%€; and {¢; in terms
of the displacements, where "**'u; = 'u; + u;.

In step 3, we use 8" %e; = 8(je; + o€y) = So€y; that is, here 8§e; = 0 because the
variation is taken about the configuration at time ¢+ + A¢. We also bring all known quantities
to the right-hand side in the principle of virtual work equation. Note that for a given
displacement variation the expression fo, 8} Soe; d°V is known. So far we have not made
any assumption but have merely rewritten the original principle of virtual work equation.

In general, the left-hand side of the principle of virtual work equation given in step 3
is highly nonlinear in the incremental displacements w;. In step 4, we now linearize the
expression, and this linearization is achieved in the following manner.

First, we note that the term fo, §S; 87y d°V is already linear in the incremental
displacements; hence, we keep this term without change. The nonlinear effects are due to
the term fo, oSy So€; d°V, which we linearize using a Taylor series expansion,

9565y
. - d® = J
LV OSU 8(’6'} d V LV (a(r)ers

J (e
Oy a(')ers t
—
! l l l
0Crs Neglect Neglect Neglect
= J OCiir: 0€rs SOeij dOV
Oy

o€ + higher order tcrms) 8(oey + omy) d°V

t

(oers + om.s) + higher order terms) 8(oe; + omy) d°V
Nt e ——

This term is now linear in the incremental displacements because &e;; is independent of
the U;.

Comparing the UL and TL formulations in Tables 6.2 and 6.3, we observe that they
are quite analogous and that, in fact, the only theoretical difference between the two
formulations lies in the choice of different reference configurations for the kinematic and
static variables. Indeed, if in the numerical solution the appropriate constitutive tensors are
employed, identical results are obtained (see Section 6.6).

The choice of using either the UL or the TL formulation in a finite element solution
depends, in practice, on their relative numerical effectiveness, which in turn depends on the
finite element and the constitutive law used. However, one general observation can be made
considering Tables 6.2 and 6.3, namely, that the incremental linear strains oe; in the TL
formulation contain an initial displacement effect that leads to a more complex strain-
displacement matrix than in the UL formulation.
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The relations in (6.74) and (6.75) can be employed to calculate an increment in the
displacements, which then is used to evaluate approximations to the displacements, strains,
and stresses correspondmg to time ¢ + At. The displacement approximations correspond-
ingtot + At are obtained simply by adding the calculated increments to the displacements
at time ¢, and the strain approximations are evaluated from the displacements using the
available kinematic relations [e.g., relation (6.54) in the TL formulation]. However, the
evaluation of the stresses corresponding to time ¢ + Az depends on the specific constitutive
relations used and is discussed in detail in Sectlon 6.6.

Assuming that the approximate displacements, strains, and thus stresses have been
obtained, we can now check into how much difference there is between the internal virtual
work when evaluated with the calculated static and kinematic variables for time ¢ + Az and
the external virtual work. Denoting the approximate values with a superscript (1) in antic-
ipation that an iteration will in general be necessary, the error due to linearization is, in the
TL formulation,

Error = *&® — Jo rysM grareld goy (6.76)
v
and in the UL formulation,

Error = &R — 1+At,rfjl) 5:+A:e,(-j1) dray (677)
H-Alv(l)

We should note that the right-hand sides of (6.76) and (6.77) are equivalent to the
right-hand sides of (6.74) and (6.75), respectively, but in each case the current configura-
tions with the corresponding stress and strain variables are employed. The correspondence
in the UL formulation can be seen directly, but when considering the TL formulation, it
must be recognized that Soe;; is equivalent to §*%e (1) when the same current displacements
are used (see Exercise 6.29).

These considerations show that the right-hand sides in (6.74) and (6.75) represent an
“out-of-balance virtual work™ prior to the calculation of the increments in the displace-
ments, whereas the right-hand sides of (6.76) and (6.77) represent the “out-of-balance
virtual work” after the solution, as the result of the linearizations performed. In order to
further reduce the “out-of-balance virtual work” we need to perform an iteration in which
the above solution step is repeated until the difference between the external virtual work and
the internal virtual work is negligible within a certain convergence measure. Using the TL
formulation, the equation solved repetitively, fork = 1,2,3,...,is

J ij"rs )] Aoe(") 5081, d°v + Jo 1+A6Sgt—1) SAO'”E;‘) d°v = t+Atgt _ Jo '*AéSS}‘_” g+A6€g:—l) d°v
v

v

(6.78)
and using the UL formulation, the equation considered is
J HAer )] A'+mers) 51+A,ed dt+A1V + J 1+Ar (k 1) 5A Amsk) d”’A'V
t+Ary(k—1) 1+ (k—1) (6 79)
= I+At% _ '+A'T(»;_1) 8,+A,e,(-;‘—” drray

t+Ary(k—1)
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where the case k = 1 corresponds to the relations in (6.74) and (6.75) and the displace-
ments are updated as follows:

‘+A’u,(-") . 1+Aru5k—l) + Au,(-"); 1+Ar,0) = 1y (680)

The relations in (6.78) to (6.80) correspond to the Newton-Raphson iteration already
introduced in Section 6.1. Therefore, the expressions in the integrals are all evaluated
corresponding to the currently available displacements and corresponding stresses. Note
that in (6.79) the Cauchy stresses, the tangent constitutive relation, and the incremental
strains are all referred to the configuration and volume at time 7 + At, end of iteration
(k — 1); that is, the quantities are referred to “**#V*~, where for k = 1, *4V©@ =y,

In an overview of this section, we note once more a very important point. Our
objective is to solve the equilibrium relation in (6.13), which can be regarded as an exten-
sion of the virtual work principle used in linear analysis. We saw that for a general incre-
mental analysis, certain stress and strain measures can be employed effectively, and this led
to a transformation of (6.13) into the updated and total Lagrangian forms. The lineariza-
tion of these equations then resulted in the relations (6.78) and (6.79). It is most important
to recognize that the solution of either (6.78) or (6.79) corresponds entirely to the solution
of the relation in (6.13). Namely, provided that the appropriate constitutive relations are
employed, identical numerical results are obtained using either (6.78) or (6.79) for solution,
and, as mentioned earlier, whether to use the TL or the UL formulation depends in practice
only on the relative numerical effectiveness of the two solution approaches.

So far we have assumed that the loading is deformation-independent and can be
specified prior to the incremental analysis. Thus, we assumed that the expression in (6.14)
can be evaluated using

A = Jo &FE Su, d°V + Jo &f3 duf d°S (6.81)
\4 Sf

which is possible only for certain types of loading, such as concentrated loading that does
not change direction as a function of the deformations. Using the displacement-based
isoparametric elements, another important loading condition that can be modeled with
(6.81) is the inertia force loading to be included in dynamic analysis. In this case we have

J 1+Axp 1+Atu"_ au‘_ dr+A1V — J Op t+Atu"_ aul_ dOV (682)
t+Aary Oy

and hence, the mass matrix can be evaluated using the initial configuration of the body. The
practical consequence is that in a dynamic analysis the mass matrices of isoparametric
elements can be calculated prior to the step-by-step solution.

Assume now that the external virtual work is deformation-dependent and cannot be
evaluated using (6.81). If in this case the load (or time) step is small enough, the external
virtual work can frequently be approximated to sufficient accuracy using the intensity of
loading corresponding to time ¢ + At, but integrating over the volume and area last calcu-
lated in the iteration

J: 1+AIfB Gy, JrrAY = J A8 Su AV (6.83)
1+Ary, t+Ary(k—1)
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and f FAIFS 58 Qg < f FAIS 58 Jiraig (6.84)
t+Atg t+Argk—1)

In order to obtain an iterative scheme that usually converges in fewer iterations, the effect
of the unknown incremental displacements in the load terms needs to be included in the
stiffness matrix. Depending on the loading considered, a nonsymmetrig stiffness matrix is
then obtained (see, for example, K. Schweizerhof and E. Ramm [A]), which may require
substantially more computations per iteration.

The total and updated Lagrangian formulations are incremental continuum mechan-
ics equations that include all nonlinear effects due to large displacements, large strains, and
material nonlinearities; however, in practice, it is often sufficient to account for nonlinear
material effects only. In this case, the nonlinear strain components and any updating of
surface areas and volumes are neglected in the formulations. Therefore, (6.78) and (6.79)
reduce to the same equation of motion, namely,

f CEV Ae® ey dV = AR — J ar gD ey dV (6.85)
v v

where "% g1 is the actual physical stress at time ¢ + At and end of iteration (k — 1).In
this analysis we assume that the volume of the body does not change and therefore ‘* %S, =
tHétr. = Mg and there can be no deformation-dependent loading. Since no kinematic
nonlinearities are considered in (6.85), it also follows that if the material is linear elastic,
the relation in (6.85) is identical to the principle of virtual work discussed in Section 4.2.1
and would lead to a linear finite element solution.

In the above formulations we assumed that the proposed iteration does converge, so
that the incremental analysis can actually be carried out. We discuss this question in detail
in Section 8.4. Furthermore, we assumed in the formulation that a static analysis is per-
formed or a dynamic analysis is sought with an implicit time integration scheme (see
Section 9.5.2). If a dynamic analysis is to be performed using an explicit time integration
method, the governing continuum mechanics equations are, using the TL formulation,

J §Sy 85e; d°V = 'R (6.86)
Oy
using the UL formulation,

J iry Siey AV = 'R (6.87)

ty

and using the materially-nonlinear-only analysis,
J ‘g Sey dV = 'R (6.88)
|4

where the stress and strain tensors are as defined previously and equilibrium is considered
at time ¢. In these analyses the external virtual work must include the inertia forces corre-
sponding to time ¢, and the incremental solution corresponds to a marching-forward al-
gorithm without equilibrium iterations. For this reason, deformation-dependent loading can
be directly included by simply updating the load intensity and using the new geometry in
the evaluation of ‘R. The details of the actual step-by-step solution are discussed in Sec-
tion 9.5.1.
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6.2.4 Exercises

6.1. A four-node plane strain finite element undergoes the deformation shown. The element is origi-
nally square, the density °p of the element is 0.05, and 4°x and d°% are infinitesimal fibers.
For the deformed configuration at time ¢:
(a) Calculate the displacements of the material points within the element as functions of °x, and
OX2.
(b) Calculate the deformation gradient §X, the right Cauchy-Green deformation tensor §C, and
the mass density ‘p as a function of °x, and °x,.

0% 4 tx, A

1
OI\
Y axp />\.2 .
2

\ 3 4 30°

45 S 4

6.2. For the element in Exercise 6.1, calculate the stretches ‘A and ‘A of the line segments 4°x and
d°% and the angular distortion between these line segments.

6.3. Considerthe four-node plane strain element shown, Calculate the deformation gradient for times

At and 2At. [Hint: Establish (by inspection) the matrices {R and §U such that (X = ¢R (U,
where ¢R is an orthogonal (rotation) matrix and JU is a symmetric (stretch) matrix.]

2}: 4\/ 45°
ul 2
3

X2 }4—-—-5—'—*!\_/( Time At

Time 0
Rigid body
translation
X and rotation
Rigid body
N 4 translation

and stretching

Time 2At

45°
g\/
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6.4.

6.5.

6.6.

6.7.

Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap. 6

The four-node plane stress element of incompressible material shown is first stretched in the x,
and x, directions and then rigidly rotated by 30 degrees.

(a) Calculate the deformation gradient 24X of the material points in the element.

(b) Calculate the stretches of the line elements d%s, and d°s..

X2 A - 2 - Id——a———bl
- 1 P
2 1

2 1 45° ;

dOS%LﬂA" 2 25
d°$1 A 1

Time 0 -~ Time At Time 2At
X1

Consider the four-node element and its deformations to time At in Exercise 6.4. Assume that the
deformation gradient at time Ar is now expressed in the coordinate axes X, X, shown. Calculate
this deformation gradient %X and show that %X is not equal to 24X calculated in Exercise 6.4.
(In Exercise 6.4 the element was stretched and rotated, whereas here the element is only
stretched.)

3.0
X2 | >
30° )?2 | |

X1

X1

Consider the motions of two infinitesimal fibers in a two-dimensional continuum. At time 0, the

fibers are
111 0
0y — 0. 0% — 0a
d \/E[I:Ids, a’k [l]ds

and at time ¢, the fibers are

-1
d'x = [?:I d°s; d'g = [ 1 ] d°

Both fibers emanate from the same material point.

(a) Calculate the deformation gradient §X at that material point.

(b) Calculate the inverse deformation gradient $X at that material point (i) by inverting §X and
(ii) without inverting §X.

(¢) Calculate the mass density ratio ‘p/% at the material point.

Prove that a deformation gradient X can always be decomposed into the form X = VR where

V is a symmetric matrix and R is an orthogonal matrix. Establish V and R for the deformation
in Exercise 6.4.
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6.8.

6.9.

6.10.

6.11.
6.12.
6.13.

A four-node plane strain element is subjected to the following deformations:

. . 2 05
from time O to time Ar: . AU = [0.5 0'5]
from time At to time 2At: 3R = [c?s 30° s 300]
sin 30 cos 30

(a) Sketch the element and its motions and establish the deformation gradient 24X.

(b) Calculate the spectral decomposition of %U as per (6.32).

(¢) Calculate the elements of the decomposition of X = VR and interpret this decomposition
conceptually.

Consider the four-node axisymmetric element shown. Evaluate the deformation gradient and the

right and left stretch tensors U, V.

2.0
| 0.7
30°

1.5
I 1.0
1.0

X2 1k -

DEE

——
X1

Consider the motion of the four-node finite element shown. Calculate for time ¢,
(a) The deformation gradient and the polar decompositions X = RU and X = VR
(b) The spectral decompositions of U and V in (6.32) and (6.33)

(c) The velocity strain and spin tensors in (6.42) and (6.43).

]

u=0.4

1.0 Time t . )
. ' = 0.1; constant velocity

Time 0

7/ .

S

1.0

Prove the relations in (6.48) to (6.50).
Prove the relations in (6.56) to (6.61).

Consider the motion of the four-node element in Exercise 6.10. Calculate [A]a,., [Q1)es, and
[Q£].s using the relations (6.48) to (6.50). Verify that (6.46) and (6.47) hold.
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6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap. 6

Calculate the components of the Green-Lagrange strain tensors of the elements and their defor-

mations in Exercises 6.1, 6.3, and 6.4. In each case establish the relations in (6.51) and (6.53)

to (6.55). \

Calculate the components of the Hencky strain tensor (6.52) for the elements and their deforma-

tions in Exercises 6.1, 6.3, and 6.4.

Consider the element and its motion in Exercise 6.10. For the Green-Lagrange strain and Hencky

strain tensors, calculate E, in (6.57) by direct differentiation of (6.56). Also, establish E, using

the detailed relations (6.59) to (6.61).

Consider the motion of a material fiber d°x in a body.

(a) Prove that for the material fiber the following relation holds using the Green-Lagrange strain
tensor

dey d°x; d°x; = 3[(d's)* — (d°s)]

where (d's)? = d'x; d'x;, (d°)? = d°x; d°x; and (6.22) is applicable.
(b) At point A in a deformed body the Green-Lagrange strain tensor is known to be

. [0.6 0.2]
¢ 02 —03

Find the stretch ‘A of the line element d°% = || d°x ||, shown. Can you calculate the rotation
of the line element? Explain your answer.

Time 0 Time t

o

X2

Xq

The nodal point velocities of a four-node element are as shown. Using the element interpolation
functions, evaluate the components of the velocity strain tensor and spin tensor of the element.
Physically explain why your answer is correct.

2' X2 A 1
te,1 .tel
=02, 'G}=0.1
i} =-0.1; t43=-0.2

2 % fl=-02 ti3=-01

tGt=0.1; tid=0.2

3 4\ ! 4

| I Attime t

2

Consider the four-node plane strain element and its motion in Exercise 6.10. Evaluate the
components ‘D,,, using the relation (6.64).
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6.20. Consider the four-node plane strain element shown. Evaluate the components of the tensor &€y,

corresponding to the virtual displacement 6u! = A at node 1 as a function of °x; and %x,. (All
other 8uf = 0.)

Evaluate all matrix expressions required but do not necessarily perform the matrix multi-
plications.

X2 A

6.21. Consider the four-node element shown, subjected to an initial stress with components

Initial stress 0p = [200 100]

(==

(stress at time 0) =S 100 300

The element is undeformed in its initial configuration. Assume that the element is subjected to
a counterclockwise rigid body rotation of 30 degrees from time O to time As.

(@) Calculate the Cauchy stresses 4’ corresponding to the stationary coordinate system x;, x2.
(b) Calculate the second Piola-Kirchhoff stresses 4S corresponding to x;, x2.

(¢) Calculate the deformation gradient 4X.

o

2 I

200
X2 - t 100
X2
—
Xt 200
30° 30°
x1

initial configuration

i Time At
time 0

Next, assume that the element remains in its initial configuration but the coordinate system is
rotated clockwise by 30 degrees.

(d) Calculate the Cauchy stresses °7 corresponding to X1, X».
(e) Calculate the second Piola-Kirchhoff stresses §S corresponding to X1, X,.
(f) Calculate the deformation gradient $X corresponding to X;, X».
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6.22, The four-node plane strain finite element shown carries-at time ¢ the second Piola-Kirchhoff

stresses
100 50 0
¢S=1] 50 200 0
0 0 100
The deformation gradient at time ¢ is
210
iX=1]0 2 0
0 01
X2 |
2 1
/Time 0
1 ov
3 4

(a) Sketch the deformed configuration at time :.

(b) A rigid body rotation of 30 degrees counterclockwise is applied from time ¢ to time ¢ + At
to the element. Sketch the configuration at time ¢ + Ar.

(¢) Calculate corresponding to the stationary Cartesian coordinate system (i) the Cauchy
stresses at time ¢, (ii) the Cauchy stresses at time ¢ + Ar, and (iii) the second Piola-Kirchhoff
stresses at time ¢ + At.

6.23. The second Piola-Kirchhoff stresses ¢S are for the plane strain four-node element as shown.

(a) Calculate the Cauchy stresses at time .

(b) Obtain the second Piola-Kirchhoff stresses at time ¢ + At, ‘*48, and the Cauchy stresses at
time ¢ + At, "*47,

All stress components are measured in the stationary coordinate system xy, x».

‘\;
3
Unit thickness o Rotated by 45° from time t
at all times 4 to time t+ At
3 |
|

1 3811 =40
X2 S22 =-60
X ¢S33=~15
2 Configuration attime t 1Sy =1Sp3 = 1S3 =0
A
x 2 x 2 square attime 0

2 l
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6.24. We have used a computer program to perform the following finite element analysis.

R s
—<
Large displacements, large strains,
piane atrain analysis
X2

X1

N

We would like to verify that the program is working properly. As part of this verification, we
consider the displacements of element 1:

1 2 1
s r
x 2 4
45° 2 Y
15\ 3 4
Time 0 1 le—2 ]
X1 Time t

(a) Calculate the 2 X 2 deformation gradient jX at the centroid of the element. (Hint: Remem-
ber that (X = 9X1)
(b) The program also prints out the Cauchy stresses at the centroid of the element:

'1'11 20.50
'rn | = ] 20.50
‘T2 12.50

The material law used in the analysis is given by

éS11 11 7 0} ¢en
¢Sz | = 7 11 0 den
6512 0 0 9 d€12

Show that the Cauchy stresses printed by the program are not correct and compute the correct
Cauchy stresses based on the given element displacements.
Can you identify the program error?



536 Finite Element Nonlinear Analysis in Solid and Structural Mechanics

6.25. Consider the sheet of material shown.

Here

H

Also, the stresses are

W = -

§°x1 + 3; tuz = %OX2 + 2.5
'y = —10 pSi
'7'22 =20 pSl
‘T2 =0

Chap. 6

Identify six simple independent virtual displacement patterns and show that the principle of
virtual work is satisfied for these patterns.

', = 20 psi (tension)
YYVY VY

X2 )
e et H = H
i »l Thickness = 1 in
- =
et =]
-1 et
. -1 [t . .
3in - | 'fy, = 10 psi (compression)
- -~
et et
e et
B ]
B [t
> -
‘L -1 et
YYYYYY Configuration attime t
2i 1in — .
in >
X1
-«—1— Configuration at time 0
2in

6.26. Consider the one-dimensional large strain analysis of the bar shown.

%

9A = cross-sectional area at time 0
Truss material is incompressible

8 = body force per unit original volume

(a) For a cross section of the bar, derive an expression for the second Piola-Kirchhoff stress as
a function of the Cauchy stress, the area ratio ‘A/°4, and the deformation gradient.

(b) Starting from the principle of virtual work, derive the governing differential equation of
equilibrium in terms of quantities referred to the original configuration. Also, derive the

boundary conditions.

(¢) Now rewrite the governing differential equation in terms of quantities referred to the current
configuration and compare this equation with the differential equation associated with small

strain analysis.
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6.27. Consider a thin disk spinning around its symmetry axis with constant angular velocity w as
shown, The disk is subjected to large displacements. Specialize the general equations of the
principle of virtual work in Tables 6.2 and 6.3 to this case. In the analysis, only the displacements
of the disk particles in the x, direction are considered.

e ___@____LA_

H h<<b
X2 |

Section AA - b > Oy

h

6.28. Consider the four-node plane strain element shown. The nodal point displacements at time ¢ and

time ¢t + Ar are shown. Calculate the incremental Green-Lagrange strain tensor components o€
from time ¢ to time ¢t + Ar.

N 4
1

"’1
1

2 Attime t+ At
Y 1 Attime t
} At time 0

. {original configuration)
[
1
T P

2.0, s .

6.29. In the derivations in Section 6.2.3 we used
f H-Aésij 8:+A5€U dOV —_ f r+Aésij aoev dOV
Oy Oy
and hence, here & {e; = 0. But we also used
J (;Stj 608,‘1 dOV = J 6S11 6(56,7 dOV
Oy Oy

and hence, here & ye; = & J€; and clearly 6 Je; # 0. Discuss briefly why all these equations are
correct.
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6.30. Establish the second Piola-Kirchhoff stresses ¢S; and the variations in the Green-Lagrange
strains 8ge; for the disk in Exercise 6.27 and show explicitly that for this case, f,v 'y Sy d'V
= [, 6y 85€; d°V is indeed true.

6.3 DISPLACEMENT-BASED ISOPARAMETRIC CONTINUUM
FINITE ELEMENTS

In the previous section we developed the linearized principle of virtual displacements
(linearized about the state at time f) in continuum form. The only variables in the equations
are the displacements of the material particles.

If finite elements with only nodal point displacements as degrees of freedom are
considered, then the governing finite element matrices corresponding to a full linearization
of the principle of virtual displacements about the state at time ¢ can be obtained directly
by use of the equations given in the previous section. The key point to note is that in this
case the element degrees of freedom, i.e., the element displacements, are exactly the
variables with respect to which the general principle of virtual displacements has been
linearized. Let us consider the following derivation to emphasize this point. This derivation
will also show that if other than displacement degrees of freedom are used, such as rotations
in structural elements or stresses in mixed formulations, the linearization with respect to
such finite element degrees of freedom is more efficiently achieved by a direct Taylor series
expansion with respect to such variables.

6.3.1 Linearization of the Principle of Virtual Work
with Respect to Finite Element Variables

The principle of virtual displacements in the total Lagrangian formulation is given by
f Sy 8 e dOV = AR (6.89)
Oy

Let us linearize this expression with respect to a general finite element nodal degree
of freedom ‘ai, where ‘a, may be a displacement or rotation. We assume that "*4Q is
independent of the deformations. We then have, using a Taylor series expansion,

. d
’+A(§Sij 6’+A(§€,'j = (;Sg 86511 + a(ésq 565,]) dak (6.90)

where day is a differential increment in ‘a;. We note that

0 t€,"
Sey = — 8a; 6.91)
a a;
where 8a; is a variation in ‘a;, and hence the variation is taken with respect to the nodal
parameter ‘g; about the configuration at time ¢.
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The second term in(6.90) may be chain- differentiated to obtain

a 6
ap_(o if 666!1) da, = ° ]80511 da; + OSu a (60€j) day
a(; Sij a(;ers) <60€u ) <60€v )
=\ = ] + 48, Say) d 92
<a(;€rs a'ak 9" - dak OSJ 6'(1« % % (6 )
dd€s 04 3’ fe€;

= OC:jrs 30(61 a()eu 8(11 dak + ()S,j 0 — 8(1( dak

k
where in the last step we used

a5 Sy
a(z’,ej = 4Cys (6.93)

Using the definition of the Green-Lagrange strain, we further have

dbe; 1 (%u,-j Abu;,; it ; 3btm .-)
=—{—= 4+ —= + {Un = + U, ; - 6.94
6'ak 2 atak 6’ak Ol a’ak Olhm. s a'ak ( )
e 1 < 3 bu 3% bu Oblhm i Oty ;  ObUm ; Oblhm, ;
and l_] = - t m, ] t - ml L, 1 m, J m, L, J 6.95
dar da;, 2 Cdada ™ Fada | da da da; dar (6.95)

The substitution of (6.90) and (6.92) into the principle of virtual displacements (6.89)
gives

a0€r.r 30€u f 9? Ofu } (f 30611 )
rs d°v 6Sy———— d°V} da, ba; = rrAgp, — d°V| &
{LVoCu Yo T °v0 S T x 8a t Sy v, a
(6.96)

where “*AQR, denotes the external virtual work corresponding to 8a,.

If we now compare the expression in (6.96) [and using (6.94) and (6.95)] with the
linearized principle of virtual displacement expression in Table 6.2, we recognize that for
isoparametric displacement-based continuum elements with nodal displacement degrees of
freedom only, both expressions can directly, and easily, be employed to obtain the same
finite element equations. However, for elements with rotational degrees of freedom, the
expression in (6.96) may be more direct for the derivation of the fully linearized finite
element equations. Namely, the second derivatives of the displacement gradients with
respect to the nodal point variables appearing in (6.95) are then not zero, and their effect
also needs to be included. Consequently, if the continuum linearizations in Tables 6.2 and
6.3 are used, it must be recognized that the terms §S; Soe;; and '7; 8,e;;, on the right-hand
side of the equations, still contribute terms to the stiffness matrix when oe;; and .e;; are not
a linear function of the nodal point variables (see Section 6.5).

If, in addition, other than displacement and rotational element degrees of freedom are
used, then certainly the above approach of linearization is very effective (see Section 6.4
for the derivation of the displacement/pressure formulations).

Here we have considered only a total Lagrangian formulation but should recognize
that the same procedure of linearization is also applicable to updated Lagrangian formula-
tions, and to all these formulations with all different material descriptions. The same
procedure can also be employed to linearize the external virtual work term in (6.89) in case
the loading is deformation dependent.
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6.3.2 General Matrix Equations of Displacement-Based
Continuum Elements

Let us now consider in more detail the matrices of isoparametric continuum finite elements
with displacement degrees of freedom only.

The basic steps in the derivation of the governing finite element equations are the same
as those used in linear analysis: the selection of the interpolation functions and the interpo-
lation of the element coordinates and displacements with these functions in the governing
continuum mechanics equations. By invoking the linearized principle of virtual displace-
ments for each of the nodal point displacements in turn, the governing finite element
equations are obtained. As in linear analysis, we need to consider only a single element of
a specific type in this derivation because the governing equilibrium equations of an assem-
blage of elements can be constructed using the direct stiffness procedure.

In considering the element coordinate and displacement interpolations, we should
recognize that it is important to employ the same interpolations for the coordinates and
displacements at any and all times during the motion of the element. Since the new element
coordinates are obtained by adding the element displacements to the original coordinates,
it follows that the use of the same interpolations for the displacements and coordinates
represents a consistent solution approach, and means that the discussions on convergence
requirements in Sections 4.3 and 5.3.3 are directly applicable to the incremental analysis.
In particular, it is then ensured that an assemblage of elements that are displacement-com-
patible across element boundaries in the original configuration will preserve this compati-
bility in all subsequent configurations.

In Sections 6.2.3 and 6.3.1 we derived the basic incremental equations used in our
finite element formulations. While in practice an iteration is necessary, we also recognized
that the equations in Tables 6.2 and 6.3 and Section 6.3.1 are the basic relations that are
used in such iterations. Hence, in the following presentation we only need to focus on the
basic incremental equations derived in Tables 6.2 and 6.3 (with the discussion in Section
6.3.1) and summarized in (6.74) and (6.75).

Substituting now the element coordinate and displacement interpolations into these
equations as we did in linear analysis, we obtain—for a single element or for an assemblage
of elements—
in materially-nonlinear-only analysis:
static analysis:

‘KU = 4R — 'F 6.97)

dynamic analysis, implicit time integration:
M 40 + ‘KU = 4R — 'F (6.98)

dynamic analysis, explicit time integration:
MU="R-"F (6.99)

using the TL formulation:
static analysis:

(6K + tKp)U = AR — ¢F (6.100)
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dynamic analysis, implicit time integration:

M 40 + (K. + §Ky)U = 4R — ¢F (6.101)
dynamic analysis, explicit time integration:
M'U="R-F (6.102)
and using the UL formulation:
static analysis:
(K. + Km)U = "*4R - [F (6.103)
dynamic analysis, implicit time integration:
M40 + (K. + Ky)U = "R — F (6.104)

dynamic analysis, explicit time integration:
MU ='R-F (6.105)

where M = time-independent mass matrix

‘K = linear strain incremental stiffness matrix, not including the initial displacement effect
6Ky, (K. = linear strain incremental stiffness matrices

6K, i Kx = nonlinear strain (geometric or initial stress) incremental stiffness matrices
&R = vector of externally applied nodal p point loads at time ¢ + Ar; this vector is also used at
time ¢ in explicit time integration

‘F, §F, iF = vectors of nodal point forces equivalent to the element stresses at time ¢

U = vector of increments in the nodal point displacements
U, #~U = vectors of nodal point accelerations at times ¢ and ¢t + At

In the above finite element discretization we have assumed that damping effects are
negligible or can be modeled in the nonlinear constitutive relationships (for example, by use
of a strain-rate-dependent material law). We also assumed that the externally applied loads
are deformation-independent, and thus the load vector corresponding to all load (or time)
steps can be calculated prior to the incremental analysis. If the loads include deformation-
dependent components, it is necessary to update and iterate on the load vector as briefly
discussed in Section 6.2.3.

The above finite element matrices are evaluated as in linear analysis. Table 6.4
summarizes—for a single element—the basic integrals being considered and the corre-
sponding matrix evaluations. The following notation is used for the calculation of the
element matrices:

H5, H = surface- and volume-displacement interpolation matrices
LS +APP = vectors of surface and body forces defined per unit area and per unit volume of the
element at time 0
B., {B., /B, = linear strain-displacement transformation matrices; B, is equal to {B, when the
initial displacement effect is neglected

$Bww, By, = nonlinear strain-displacement transformation matrices
C = stress-strain material property matrix (incremental or total)
oC, /C = incremental stress-strain material property matrices
‘7, ‘4 = matrix and vector of Cauchy stresses
5S, 'S = matrix and vector of second Piola-Kirchhoff stresses
3, = vector of stresses in materially-nonlinear-only analysis
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TABLE 6.4 Finite element matrices

Analysis type Integral Matrix evaluation
J' 0p tar Sy, dOV M o = <I ° H'H d°V) t+argy
In all Oy ov
analyses
AR = f ++81 LS 58 4O AR = f HSTI-#-A(;fS d°s
OSf oSf
+ j '+A(sfi36ui d OV + HT :+A6fB doV
oy Oy
Materially-nonlinear- J' Cirs € B¢y AV Kii = ( f BICB, dV)ﬁ
only v v
[vinar v [arta
v . v
J' 0 Cirs 0€rs Soey dV K.l = (f $BI oC (B, dov)ﬁ
Total Oy oy
Lagrangian . o ¢ A= IRT ¢ 0
formulation J; . 45y Somy d°V dKn i o tBRz 6S By, d°V )i
J 5S; Soey d°V {F = j $BI &S d°V
oy Oy
j :Cijn €rs 613(,' av (K. (j {B{ .C B, d'V)ﬁ
Updated ty v
zr;‘::l‘ft‘:; j 'y &my d'V K = (j 'B%. ‘T By d'V)ﬁ
ty fy
j ‘1; dey d'V iF = f ‘Bl '% d'V
ty ty

These matrices depend on the specific element considered. The displacement interpo-
lation matrices are simply assembled as in linear analysis from the displacement interpola-
tion functions. In the following sections we discuss the calculation of the strain-
displacement and stress matrices and vectors pertaining to the continuum elements that we
considered earlier for linear analysis in Chapter 5. The discussion is abbreviated because the
basic numerical procedures employed in the calculation of the nonlinear finite matrices are
those that we have already covered. For example, we consider again variable-number-nodes
elements whose interpolation functions were previously given. As before, the displacement
interpolations and strain-displacement matrices are expressed in terms of the isoparametric
coordinates. Thus, the integrations indicated in Table 6.4 are performed as explained in
Section 5.5.

In the following discussion we consider only the UL and TL formulations because the
matrices of the materially-nonlinear-only analysis can be directly obtained from these
formulations, and we are only concerned with the required kinematic expressions. The
evaluation of the stresses and stress-strain matrices of the elements depends on the material
model used. These considerations are discussed in Section 6.6.
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6.3.3 Truss and Cable Elements

As discussed previously in Section 4.2.3, a truss element is a structural member capable of
transmitting stresses only in the direction normal to the cross section. It is assumed that this
normal stress is constant over the cross-sectional area.

In the following we consider a truss element that has an arbitrary orientation in space.
The element is described by two to four nodes, as shown in Fig. 6.3, and is subjected to large
displacements and large strains. The global coordinates of the nodal points of the element
are at time 0, %x%, °x%, °x4 and at time ¢, ‘x%, ‘x5, ‘x4, where k = 1, ..., N, with N equal
to the number of nodes (2 = N = 4). These nodal point coordinates are assumed to
determine the spatial configuration of the truss at time 0 and time ¢ using

N N N
() = 2 Bt On() = 2 B %n() = 2 hOx (6.106)
k=1 k=1 k=1
N N N
and ' (r) = > e 'xks x:(r) = > hy 'xk; 'x3(r) = > h ‘x4 (6.107)
k=1 k=1 k=1

where the interpolation functions h(r) have been defined in Fig. 5.3. Using (6.106) and
(6.107), it follows that

N
() = 2 he'ut (6.108)
k=1

N
and w(r) = 2 b, i=1,23 (6.109)
k=1

°X3, tX3 “

Figure 6.3 Two- to four-node truss
9%, element

Since for the truss element the only stress is the normal stress on its cross-sectional area,
we consider only the corresponding longitudinal strain. Denoting the local element longitu-
dinal strain by a curl, we have in the TL formulation,

dx;d'w;  1d'wd'u

lg, = —— 4 2 M2 H 6.110
ocn d% d% = 2 d°% d° ( )



544 Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap. 6

where °s(r) is the arc length at time O of the material point °x;(r), °x2(r), °xs(r) given by
N

O5(r) = 2 It s (6.111)
k=1

The increment in the strain component §€;; is denoted as (&, where &1 = ¢éi; +
of1 and

_ddu | d'w du

oo = Jos a% T Ps s 6.112)
ofhn = %'302;‘5—:; (6.113)
For the strain-displacement matrices we define
O%T = ®x} °xi Ox} ... %Y o) %xY] (6.114)
G = ul wdy oWl - Wy ud W]
@ =[ul w ow e W w W] (6.115)
1 0 0
H= [h,l; Lo ths]; L=|0 10 (6.116)
0 01
and hence, using (6.112) and (6.113),
(B = (*J"): (°'HTH, + ‘("HTH,) (6.117)
and By = °J'H, (6.118)
where °J~' = dr/d°s. We note that since By, is independent of the orientation of the

element, the matrix jKu. is so as well.

The only nonzero stress component is 4511, which we assume to be given as a function
of the Green-Lagrange strain §&,; at time ¢ (see Section 6.6). The tangent stress-strain
relationship is therefore

oCin = —— (6.119)

Using (6.114) to (6.119), the truss element matrices can be directly calculated as
given in Table 6.4. Referring to Tables 6.2 to 6.4, the above relations can also be directly
employed to develop the UL formulation, and of course the materially-nonlinear-only
formulation. Consider the following examples.

EXAMPLE 6.16: For the two-node truss element shown in Fig. E6.16 develop the tangent
stiffness matrix and force vector corresponding to the configuration at time ¢. Consider large
displacement and large strain conditions.

We note that the element is straight and is at time O aligned with the °x; axis. Hence, we
need not use the curl on the stress and strain components, and the equations of the formulation
are somewhat simpler than (6.110) to (6.119). In the following we use two formulation ap-
proaches to emphasize some important points.
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U2f
t
°xz, 'Xz A / P
e 2
2 v
Configuration at time t
Configuration at time 0
Node 1 T
I: ",'_ =1| 2 X1, X9

(a) Two-node element

(LP A) ——— Corresponds to elements in
'L matrix {Kne
tp
A
(A is very small)

R

2

Figure E6.16 Formulation of two-node truss element

~

L

(b} Moment equilibrium of element

First Approach: Evaluation of Element Matrices Using Table 6.4: Using the TL
formulation we need to express the strains oe1; and omy; given in Table 6.2 {and (6.112) and
(6.113)] in terms of the element displacement functions. Since the truss element undergoes
displacements only in the °x;, °x, plane, we have

ou, 'ur ouy 'uy ou

Fx;  %x; %x % 8%,

Al (o
o = 2|\, x,
But by geometry, or using ‘u; = Zi_, h ‘uf with ‘u} = 0, ‘uy = 0, 'u} = °L + AL) cos

— L, 'u3 = °L + AL)sin 6, °J = °L/2 and the interpolation functions given in Fig. 5.3, we
obtain

o€ =

duy _ (L + AL)cos §
6°x; 0L

du, _ (L + AL)sin 8

L o, oL
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We therefore have

°L + AL
0e“=%{[—1 01 0]+<——0L—cos9—1)[—1 0 1 0]

ul
°L + AL | ub
+ ( o Sin 9)[0 1 0 1]} 3
u3
ul
°L + AL . . ul
= —(—O—L)z—[—cos 0 —sin@ cos @ sin 6] 3
u3

and hence,

[
oBL = —L'F)-;‘)_.‘,AL[—COS 6 —sinf® cosf sin 6]

Of course, the same result for §B, is obtained using (6.117). The nonlinear strain displacement
matrix is [from (6.118)]

, 11—t 0 1 0

0B = OL[ 0 -1 0 1]

In the total Lagrangian formulation we assume that § Sy, is given in terms of §€,,, and we
have

a(’)Sll
Ciii =
0% 1111 666”
If we use 6811 = Eben, we have of course ¢Cy1;; = E. The tangent stiffness matrix and force
vector are therefore (see Table 6.4)
cos? @ cos Osin 0 —cos? 0 —cos 0 sin 6
(°L + AL)? sin® —sin 6 cos 6 —sin®
K = oCiinn ————°A
0 N 7% cos? 0 sin 6 cos 0
Symmetric sin® 0
1 0 -1 0
‘P 0 1 0 -1
+ —_——
L+AL|-1 0 1 o0 @
0 -1 0 1
—cos 0
-—y 0
iF = P sin
cos 0

sin @
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where ‘P is the current force carried in the truss element. Here we have used, with the Cauchy
stress equal to ‘P/'A,

0 °L 2tp AL 1 /ALY
6Sn =‘_P<__) T2 ben =_+‘<_)
P ‘A

°L + AL °L  2\°L
OL rP
0,07 OA == 1,(0 + A I3 —_-
P L°A P(L AL) ) 6Su ()L + AL 0A (b)
°L + AL
P oS tAT

The first term in (a) represents the linear strain stiffness matrix, and the second term is the
nonlinear strain stiffness matrix, which, as noted earlier, is independent of the angle 6.

Second Approach: Taking the Derivative of the Force Vector §F: The tangent stiffness
matrix of any element can be obtained by direct differentiation of the force vector {F (see Section
6.3.1); that is,

!
0

a!

=1
=51

(K = ©

=

where ‘@ is the vector of nodal point displacements corresponding to time ¢, Here we have for the
general truss element formulation in (6.106) to (6.119), {F = fov §BT §S,, d°V, so that

¥*F J iy 9511 8b&n J BT, &
—=| 4B dV + | ==58ud°V d
da Jo,” " & o o, 0 "7 @

Using (6.117) and (6.118), we have
BI
't

= (01—1)2 H.H, = {BJ,. §Bx
so that the second term in (d) gives the § Ky, matrix. Also, using (6.110) and (6.117), we directly
see that

dbén
da

= (B,

and hence, the first term in (d) gives the {K; matrix.

However, to gain more insight, let us consider the derivation of §K in (¢) specifically for
the two-node truss €lement in Fig. E6.16 using the following details.

For the two-node element, §F is given by simple equilibrium

—cos 0
—sin 0
cos 0
sin 0

¢F =P

where ‘P is the current force (positive when a tensile force) carried by the element, and we have

'ﬁT=['u% tu% ru% ru%]




548

Finite Element Nonlinear Analysis in Solid and Structural Mechanics

Chap. 6

Let us consider the third and fourth columns of the stiffness matrix (from which the first

and second columns can be derived). We have
'uf = OL + AL) cos 6 — °L
‘u3 = C°L + AL)sin 0
J J
dhe oL | _ [ cos 0 sin 0 ] a'ut
and hence, 9 —CL + AL)sin® (°L + AL)cos 6 d
a0 d‘ul
d cos 6 — sin 6 d
1,2 0 +
from which 9 ut| _ L + AL} | 3(AL)
d sin 6 cos 0 9
d'u3 °L + AL a0
Therefore, the third column of ¢K is given by’
oF _ aF a(AL)  aF o6
3wt 9(AL) a'ut 30 9'u}
—cos 6 sin 6 |
d'P | —sin @ —cos @ —sin 6
= — +'P —_—
d(AL) | cos 8 cos 0 —sin 6 (°L + AL) ©
sin 6 cos 0 |
a( ‘P ) —cos® 6 -1
°L + AL —sin 6 cos 6 ‘p 0
= + AL +—
d(AL) CL ) cos? °L + AL} 1
sin 6 cos 6 0
Similarly, for the fourth column of {K,
dF _ aF o(AL) &F o6
d'ui O(AL) 3'u3 36 3 'u}
a( ‘P ) —cos O sin 6 0
°L + AL —sin? 9 ‘P -1
= +
d(AL) CL + AL) sin  cos 6 * °L+AL| O ®
sin? @ 1
However, using (b),
(i
o5 )
L+ AL/ 368, °L + AL
L + = 0
3(AL) ( AL) a(AL) °L
_ d6Sn 66611 oL + ALO _ J (’)S“ (OL + AL)2 04
d (')En a(AL) OL d (')Eu OL3
L + AL}
= oCuu"—‘—(o 073 ) °A
7Note that if the material stress-strain relationship is such that ‘P is constant with changes in AL, only the

second term in the second line of this equation is nonzero.
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Hence, the results in (¢) and (f) are those already given in (a).

We note that the entries in the nonlinear strain stiffness matrix can also be directly
obtained from equilibrium considerations as shown in Fig. E6.16(b).

Also, the updated Lagrangian formulation could be obtained from the result in (a) by using
the relation (see Example 6.23)

0 or, 4
oCin = }%(m) Cun

) (L + ALY ‘A

so that in (a) oCuuWoA = Icllllm (g
If we also note that for infinitesimally small displacements the linear strain stiffness matrix
reduces to the well-known truss element matrix (see Example 4.1), we recognize that with the
result of (g) substituted in (a), the updated Lagrangian stiffness matrix is in fact what we would
expect it to be from physical considerations.

EXAMPLE 6.17: Establish the equilibrium equations used in the nonlinear analysis of the
simple arch structure considered in Example 6.3 when the modified Newton-Raphson iteration
is used for solution.

In the modified Newton-Raphson iteration, we use (6.11) and (6.12) but evaluate new
tangent stiffness matrices only at the beginning of each step.

As in Example 6.3, we idealize the structure using one truss element [see Fig. E6.3(b)].
Since the displacements at node 1 are zero, we need to consider only the displacements at node 2.
Using the derivations given in Example 6.16, with 8 = ‘8 we have

(K, = Eé[ (cos'B)*  sin ‘B cos 'B}
O™ L | sin 'B cos ‘B (sin 'B)?

‘Pi1 0
(')KNL=_|: jl

L]0 1
iF = ,P[C?s iﬁjl
sin '8
where we assumed in the stiffness expressions that L and EA/L are constant throughout the

response.

The matrices correspond to the global displacements ‘u? and ‘u3 at node 2. However, ‘u?
is zero, hence the governing equilibrium equation is

t+Ar

[Eé (sin IB)Z + z] Au%(i) = — _ 1+A1P(i—l) sin (r+AtB(i—l))

L L

where '*4'R/2 is positive as shown in Fig. E6.3(b) and ‘+2’P¢~1) js the force in the bar (tensile
force being positive) corresponding to the displacements at time ¢ + At and end of iteration

@—1).

6.3.4 Two-Dimensional Axisymmetric, Plane Strain,
and Plane Stress Elements

For the derivation of the required matrices and vectors, we consider a typical two-
dimensional element in its configuration at time O and at time ¢, as illustrated for a
nine-node element in Fig. 6.4. The global coordinates of the nodal points of the element are
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s 1 1 r
r 4
/ 8
8 4
Oxp,
20 X2 4
Configuration Configuration
attime 0 attime t
3 .
3
0x1l ‘X1
Figure 64 Two-dimensional element shown in the global ‘x, ‘x, plane
at time 0, ®x%, %x%, and at time ¢, ‘x}, ‘x5, where k = 1,2, .. ., N, and N denotes the total

number of element nodes.
Using the interpolation concepts discussed in Section 5.3, we have at time 0,

N N
= 2 kOt = X by Oxk (6.120)
k=1 k=1
N N
and at time ¢t 'xl = 2 hy 'x’f; X, = 2 hy 'x’i (6121)
k=1 k=1

where the h; are the interpolation functions presented in Fig. 5.4.
Since we use the isoparametric finite element discretization, the element displace-
ments are interpolated in the same way as the geometry; i.e.,

N N

‘u = 2 by uk; 'uy = 2 By tub (6122)
k=1 k=1
N N

=2 houkt;  wm= 2 hul (6.123)
k=1 k=1

The evaluation of strains requires the following derivatives:

Fui < ahk), .

= El (aox,. Ut (6.124)
i~ ahk)k i=1,2

P Z’l (a°x,- =12 (6.125)
au, X (ahk) &

ol Z,l oz )" (6.126)

These derivatives are calculated in the same way as in linear analysis, i.e., using a Jacobian
transformation. As an example, consider briefly the evaluation of the derivatives in (6.126).
The other derivatives are obtained in an analogous manner.
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The chain rule relating ‘x,, *x2, to r, s derivatives is written as

] [

or| _ .90

EI

as 'x;

. . ar ar
in which ] =

" T on om

as as

Inverting the Jacobian operator J, we obtain

3 I x|
| _ 1 as  or||or

3 | det | axm  ax||a
¥x, as or | |as

where the Jacobian determinant is

dx1 d'x2  9'x; 9'xy

and the derivatives of the coordinates with respect to r and s are obtained as usual using
(6.121); e.g.,
gﬁ = i ohy ,

ar k=1 E ¥

¥

With all required derivatives defined, it is now possible to establish the strain-
displacement transformation matrices for the elements. Table 6.5 gives the required ma-
trices for the UL and TL formulations. In the numerical integration these matrices are
evaluated at the Gauss integration points (see Section 5.5).

As we pointed out earlier, the choice between the TL. and UL formulations essentially
depends on their relative numerical effectiveness. Table 6.5 shows that all matrices of the
two formulations have corresponding patterns of zero elements, except that (B, is a full
matrix whereas /B, is sparse. The strain-displacement transformation matrix (B; is full
because of the initial displacement effect in the linear strain terms (see Tables 6.2 and 6.3).
Therefore, the calculation of the matrix product ;Bf ,C B, in the UL formulation requires
less time than the calculation of the matrix product §B] oC §B, in the TL formulation.

The second numerical difference between the two formulations is that in the TL
formulation all derivatives of interpolation functions are with respect to the initial coordi-
nates, whereas in the UL formulation all derivatives are with respect to the coordinates at
time ¢. Therefore, in the TL formulation the derivatives could be calculated only once in the
first load step and stored on back-up storage for use in all subsequent load steps. However,
in practice, such storage can be expensive and in a computer implementation the derivatives
of the interpolation functions are in general best recalculated in each time step.
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TABLE 6.5 Matrices used in the two-dimensional element formulation

A. Total Lagrangian formulation
1. Incremental strains

o€ = oty + bty oty 1 + bz otz + 1((otr, 1) + (012 1))
0€2 = ollz,2 + bir2 o1z + bz oliz2 + 5ot 2l + (okiz.2)?) .
0€12 = %(oul.z + oliz,1) + %(6"1,1 otz + bla olta 2 + bl 2 ot + b2z o2 1) + (o1, olhi 2 + o2 olz,2)

0€33 = Ay oL’} + -l-(ﬂ)z for axisymmetric analysis
% Ox)?  2\%
where ou,; = S ; duiy = Ju
Y 8% 8%

2. Linear strain-displacement transformation matrix
Using e = §B.0

where oe” = [0811 o€z 2o€12 0833]§ i = [u{ uy wt ui-o-uf uﬂ
and (B, = (B + (Bu
o1 0 ohr 0 ok O v ohvy O
0 oh2 O oh2 0 ohan --- 0 ohwn.
B =|ohi2 ohi,1 oh22 oha1 ohiz ohsy -+ ohna ohwa
hl h2 h3 hN
%, %, %, o%,
oh, S
where oh; = aTxk; uf = oyl — oyt %y = E A Oxk N = number of nodes
J . k=1
and
I ohu b ohy I oha b ohay
B, = bz ohy,2 b ohy,2 Iy oh22 I oha,2
L =
¢ (luohiz + Lz ki) (laiohiz + lnohi)) (hioha + haohay) (B ohaz + b2 ohay)
h hs
by = 0 by — 0
® oy L% o
I ohw,) by ohw
liz ohw,2 b ohw2
(hy ohwz2 + ha2ohn) (b ohwa + 122 obiv))
hw
lgg‘ole 0
N N N
where [}, = i ohe1 ‘ut; by = E ohi2 'ub; b = 2 ohi1 ‘U h = 2 ohuo 'ut;
k=1 k=1 k=1 k=1
i hy ‘uk
b = k—_‘=lo-
X1
3. Nonlinear strain-displacement transformation matrix
ohii 0 om0 ohayn O - oAy, O
ohiz 0 k2 0 oha2 O - oAy O
. 10 oy 0 oy O ohay --- 0 ohw,
6By
0 ohi2 O oh2 O ohaz --- 0 ohy2
h hy hy hy
— — 0 —= 0o .- —= 0
0%, 0 0%, %, %
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TABLE 6.5 (cont.)

4. Second Piola-Kirchhoff stress matrix and vector

553

Su S 0 0 0
¢ ; 6511
8 682 O 0 0 'S
oS = 0 0. 6850 65 0 S = an
0 0 48 652 0 , s"
0 0 0 0 58y 0%
B. Updated Lagrangian formulation
1. Incremental strains
(€11 =y t %((xum)z + (t2,1)?)
€ = iy 2 + §(Gur 2P + (uz)?)
€12 = 3Gl 2 + qng) + $(tyy 2 + sy a2)
_ W 1/mY . , .
(€33 = ; + 3 ; for axisymmetric analysis
du;
where iy = Tu
d X;
2. Linear strain-displacement transformation matrix
Using ;e = (B,
where €™ = [ienn e 2ien en); 0 =[ul wi wl w3 - uwl uf]
i 0 1h2,1 0 th3,l 0 cee b 0
0 1h1,2 0 1h2.2 0 th3,2 cr 0 th.2
B = rhl,2 rhl,l :h2,2 rh2,l ha2 th3.l ree thN,Z tha 1
- h h h h
= 0o 2 0 =2 0o .- =X o9
le le 'xl '-xl
by k +4r,k > 3 k
where by ; = P uh= ek — g xy = 2 hy x5 N = number of nodes
i k=1
3. Nonlinear strain-displacement transformation matrix
Ihl.l 0 thz,l 0 lh3.l 0 crr th.l 0
thl.2 0 :h2,2 0 :h3.2 0 M th.2 0
¢ 0 Ihl,l 0 1h2,1 0 1h3,l vt 0 th.l
IBNL -
O Ihl,2 O 1h2.2 O rh3,2 M O th.2
h h h h
= 0 = 0 =2 o0 --- = 0
7 X X 27
4. Cauchy stress matrix and stress vector
'T” '712 0 0 0
' ' g
1 T22 0 0 0 ‘.
=10 0 ' 'ma O g = ,1_22
0 0 'y 'm O L
T33

0 0 0 0 '1'33
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EXAMPLE 6.18: Establish the matrices §Byo, §B.;, and § By, corresponding to the TL formu-
lation for the two-dimensional plane strain element shown in Fig. E6.18.

- s -t
0.5cm 2 1 :
T :<— Attime t
l
3cm |
O, ', '
1 47— Attime 0
3 Uxq, B |

4
; - _‘*’
‘ ‘ Figure E6.18 Four-node plane strain

|<——3 cm——-ld———i element in large displacement /large strain
1cm

conditions

In this case we can directly use the information given in Table 6.5 with

wi=1; ‘uy = 0.5

u} = 0 ‘w3 = 0.5 oy = [% 0]
'u} =0, w3=0 0 3
yt =1, ‘up =

The interpolation functions of the four-node element are given in Fig. 5.4 (and the required
derivatives have been given in Example 5.5), so that we obtain

6B =

. I+s 0 —(1+y% 0 —-(1-3% 0 (1-y3) 0
= 0 1+ 0 1-r 0 -(1 -7 0 —(1+r
A+n@+s) O-n-(1+s)—--71-AQ=-5-1+r (-3

To evaluate {B.; we also need the [; values, where
4

= —2 -
=2 oy ‘ut = 3{hy, "ul + ho,uf} =4
k=1
4

112 = 2 ohk,z 'u’f = %{hl,: 'u} + h4,: 'u?} =0

x
]
=

M-

— -2 —
hy = ohe,1 ‘us = F{h,'ud + b2, 'uit =0

x

L |

_ _2 1
=2 ohe2 us = F{hs 'ud + ko 'udt = ¢
k=1

Hence, we have

6B =
i 20+s) 0 —=2(1+5) 0 -2(1 — ) 0 2(1 — s) 0
% 0 (+0n 0 1-=r 0 -(1-17 0 -@0+»

20+ (0 +s) 20—7 —(Q+5s)20-7r -1 -5 20+71n Q-9
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The nonlinear strain-displacement matrix can also directly be constructed using the derivatives
of the interpolation functions and the Jacobian matrix:

6B =
1+s) 0 —(+y 0 —(1—-y 0 (1 -y 0
1Ja+r 0 a1-r 0 -1-r) 0 —-(1+r 0
6] 0o 1+ 0 -1+ 0 —(1-s 0 (1-s)
0 (d+0 0 1-n 0 -1-r 0 -(1+n

6.3.5 Three-Dimensional Solid Elements

The evaluation of the matrices required in three-dimensional isoparametric finite element
analysis is accomplished using the same procedures as in two-dimensional analysis. Thus,
referring to Section 6.3.4, we simply note that for a typical element we now use the
coordinate and displacement interpolations,

N N
Ox; = 2 hy °xk; X = 2 hy ‘x¥; i=1,273 (6127)
k=1 k=1
N N
= D b ks w= > b i=1,273 (6.128)
k=1 k=1

where the element interpolation functions k. have been given in Fig. 5.5. Using (6.127) and
(6.128) in the same way as in two-dimensional analysis, we can develop the relevant
element matrices used in the TL and UL formulations for three-dimensional analysis (see
Table 6.6).

TABLE 6.6 Matrices used in the three-dimensional element formulation

A. Total Lagrangian formulation
1. Incremental strains

o€y = 3(ous; + o) + 3(6uer oty + ot e ) + 5 (ot o)) i=1,2,3j=123k=1273
h Bu,-
where ol; ; = ——
04, aoxi

2. Linear strain-displacement transformation matrix
Using ce = §B.il
where oe” = [oe;1 o€ o€z 20e12 20€23 20€3];
0=l wduduidul - ul uf uf]

6B = {Byo + §BL,

o1 O 0 oy --- 0

0 o, O o --- 0
B o] O 0 ohs 0 o o

ohi2 ok 0 ohaa - 0
0 o3 obaz 0O .- ohw:
ohi 3 0 ohyy oh2a - ohwa

oh
where ohk_j = u u,’-‘ = ”'A‘uf - ‘u}‘

3%;’
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TABLE 6.6 (cont.)

bl ghi by ohy 1 b3y oh1,1 Iy oh2,y <+« by ok
12 oh1,2 b ohi,2 bz ohy,2 li2 oha.a voo Iy ohn2
li3 oh1,3 I oh1,3 b33 ohy,3 h3 oha,3 sl ohya

B = |1 ohi2 + hzohy) (baohiz 4 baoht) (Biohyz + baohy) (hiohez2 + ha 0;12,1) <o+ (b1 ohwa 4 B2ohyy)
(lizohis + hiaohiz) (lzohis + baohi2) (Baohis + baohi2) (L ohes + lisohaa) - (b2 ohws + b ohyy)
(hiohis + haoh ) (b1 ohis + baohi1) (liohis + Baohi) (Liohes + lizohay) -+ (biohwa + b ohyy)

where lu‘ = i Ohk.j 'u{-‘

k=1
3. Nonlinear strain-displacement transformation matrix
6§NL 0 0 0
Bu=| 0 Bu 0 | 0=|0
0 0 :Bu 0
Ohl,l O O 0h2,l cre OhN,l
where 6ﬁNL =|oh2 0 0 o2z - ohn2
0h1,3 O O 0h2,3 M OhN,3
4. Second Piola-Kirchhoff stress matrix and vector
S 00 000
;=0 S 0| O=[oo0 0
0 0 S 000

6§T =[S 85 £ 6512 48 45kl
881 8812 6Sis
where 68 = | 6Su 852 Sn
6831 882 §Sn
B. Updated Lagrangian formulation
1. Incremental strains
€ = S(ij + ) + 3 (te i ety j) i=123;j=12,3k=1273
where u; ; = ﬂ
a'x,-
2. Linear strain-displacement transformation matrix
Using ,e = /B.ii
where €7 = [Le11 e €1 2€n 2en 2ey]
@ =[ul W wd ul W3 g - Wl Wy uf]
gy 0 0 hy - 0
0 2 O o .- 0
B, = 0 0 hms 0 -+ ,hys
L Ihl.2 1hl,l O 1h2.2 A O
O lhl,3 lhl,2 O cre th.z
s 0 by ez o iha

ohy
; uf = tauf — ruf, N = number of nodes

a'x;
3. Nonlinear strain-displacement transformation matrix

~
I3
IBNL

where ,hk‘ i=

0 0
By = ‘B H ﬁ =10
0 0
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TABLE 6.6 (cont.)

. rhl,l 0 0 th2'l e th,l
where Bw=|h2 0 0 h, - hn,2
1h1,3 0 0 1h2,3 th‘S
4. Cauchy stress matrix and stress vector ,
T
00 ::” 00 0
=10 % 0| '+=,T” i=(0o0 o0
00 % L 000
T23
'Ta1

TR VI T

' 't '
where

-
It

't T2 't

6.3.6 Exercises

6.31. Consider the problem shown and evaluate the following quantities in terms of the given data:
0€ij» 0T}ij» Ui oUk, j» 8% k.

Time 0 Ti;ne t ->|0'2|<—
P - SR

] -
P 0L =2 | LITE™ OSJ L‘ ’ R
o T > f No change in cross-

sectional area during
Displacement = 4 deformations

Node 2 Node 1

One 2-node element idealizetion

is used
No displacement

6.32. Consider the truss element shown. The truss has a cross-sectional area A and a Young's modulus
E. We assume small strain conditions, i.e., A/°L < 1.

. 3,

< o ]

(a) Evaluate the total stiffness matrix as a function of A and plot the linear strain stiffness
matrix element $K; and nonlinear strain stiffness matrix element {Ky; as a function of A.

(b) Let R be the external load applied to obtain the displacement A. Plot the force R as a
function of A.
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6.33.

6.34.

6.35.

Finite Element Nonlinear Anatlysis in Solid and Structural Mechanics Chap. 6

Consider the snap-action toggle shown in its initial configuration.

Assume small strain conditions and that each element has a cross-sectional area A and Young's

modulus E.

(a) For each element, calculate the linear and nonlinear strain stiffness matrices { K. and §Kn.
and the force vector (F.

(b) Calculate the linear and nonlinear strain stiffness matrices $K; and (K. and the force
vector {F of the complete toggle.

Eliminate prescribed degrees of freedom.

(¢) Using your results from part (b), establish the force-deflection curve P versus A.

_ Element ® ©)
A H
< e
5 5
Initial stress-free configuration

—]

Consider the three-element truss structure shown. Derive the tangent stiffness matrix §K and
force vector §F corresponding to the configuration at time ¢ allowing for large displacements,
iarge rotations, and large strains. Assume that the constitutive relationship is § S1: = C fen,
with C given as some function of the strain.

X2

X1

Consider the evaluation of the stiffness matrix of the four-node element shown when calculated
with the information given in Table 6.5. Let the two-dimensional element be loaded with a
deformation-dependent pressure between nodes 1 and 2. Establish the terms that should be
added to the stiffness matrix if the effect of the pressure is included in the linearization to obtain
the exact tangent stiffness matrix. Consider plane stress, plane strain, and axisymmetric condi-
tions.

Pltimeo Plime

, ST , ,

-

X2

Pltime ¢t = f('xi)
X

Time 0 Time ¢t
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6.36. The initial configuration and configuration at time ¢ of a four-node plane strain element are as
shown. The material law is linear, §S; = $Cjs b€, with E = 20,000 N/m? and v = 0.3.

(a) Calculate the nodal point forces required to hold the element in equilibrium at time z. Use
an appropriate finite element formulation.

(b) If the element now rotates rigidly from time ¢ to time ¢ + At by an angle of 90 degrees
counterclockwise, calculate the new nodal point forces corresponding to the configuration
at time ¢ + Az.

X2 A

4

3

2 |--2
i

All dimensions in meters

6.37. During a TL analysis, we find that a plane strain element is deformed as shown.

— All dimensions are
X in meters

The stress state, not including 7, is

- [5.849 X 107 6.971 x 10’
6971 X 107 1.514 x 10¢] ' °

The Poisson’s ratio » = 0.3 and the tangent Young’s modulus is E. Compute §Kj;.
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6.38.

6.39.

6.40.

Finite Element Nonlinear Analysis in Solid and Structural Mechanics Chap. 6

The two-dimensional four-node isoparametric finite element shown is used in an axisymmetric
analysis, Evaluate the last row in the §B;, {By. and /B, /By matrices at the material particle
P corresponding to the TL and UL formulations. The last row in the strain-displacement
matrices corresponds to the circumferential strain.

x2 A P 1
2 (18, 16)
X2 A 1
(13, 13) 6,14
75 Timet
Time 0
2
(5,7) 3
(9, 6) 4
3 4 (20, 5)
(5, 2) (11, 2) - -
Xq |

Consider the four-node plane stress element shown. Using the total Lagrangian formulation
calculate the following.
(a) The element of the tangent stiffness matrix corresponding to the incremental displacement
u}; i.e., evaluate element (1, 1) of the matrix (K. + §Kuz).
(b) The element of the force vector 4F corresponding to ui; i.e., evaluate element (1) of §F,
where §F is the force vector corresponding to the current element stresses.
Assume that Young’s modulus E and Poisson’s ratio » = 0.3 relate the incremental
second Piola-Kirchhoff stresses to the incremental Green-Lagrange strains and assume thick-
ness h at time 0.

0.5
j—o— ———————————— g —p— u}
A |
{822 =60 |
X2 L e
4 i Attimet
5511 = 100 <——:—— Attime 0
Xq 5312 =0 ;
572775
le | .|
' 6 BRYE

Constant stresses {S11 and Sz, and all other stresses are zero

A two-node finite element for modeling large strain torsion problems is to be constructed. The
element has a circular cross section and is straight, and all cross sections are parallel to the x;,
x2 plane as shown.

The kinematic assumption to be employed in the element is that each cross section rotates
rigidly about its center. This is illustrated in the figure. Notice that the total rotation of fiber AA
is fully described by ‘65 and that the fiber rotation can be large. Also, note that the fiber AA does
not stretch or shrink and that the center of the fiber (point C) remains fixed.
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x2 A
X2 A X A
2 P('x1, tx2,'x3) A
D P(°X1, °X2. o)(3)
1¢ —
2 x3 X
A typical
_ - > material fiber Fibar AA
A rotatas to A'A’

Enlargad viaw

(a) Calculate the deformation gradient X in terms of the initial coordinates and ‘6;.

(b) Calculate the Green-Lagrange strain tensor je. Clearly identify any terms that are associ-
ated with large strain effects.

(¢) Calculate the mass density ratio ‘p/°p in terms of the initial coordinates and ‘6;.

(d) Establish the strain-displacement matrix of the element.

6.4 DISPLACEMENT/PRESSURE FORMULATIONS FOR LARGE
DEFORMATIONS

As discussed in Section 4.4.3, for (almost) incompressible analysis, a pure displacement-
based procedure is, in general, not effective and instead, a displacement/pressure formula-
tion is attractive. Materials in large deformations frequently behave as almost incompress-
ible, and it is therefore important to extend the total and updated Lagrangian formulations
of the previous sections to incompressible analysis. Typical applications are in the large
strain analysis of rubberlike materials and in the large strain inelastic analysis of metals.

The formulations we present here are a direct and natural extension of the pure
displacement-based large deformation formulations given in the previous section and of the
pressure/displacement formulations that we discussed for linear analysis in Sections 4.4.3
and 5.3.5.

6.4.1 Total Lagrangian Formulation

We make the fundamental assumption that the material description used has an incremental
potential dj W such that

dsW = 4§, dbe; (6.129)
- AW

and hence 18y = — (6.130)
66€U

where the overbar in d5W and on the second Piola-Kirchhoff stress (and other quantities in
the following discussion) denotes that the quantity is computed only from the displacement
fields. Since we shall interpolate the displacements and the pressure independently, the
actual stress §S; will also contain the interpolated pressure.
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We note that such incremental potential is given for elastic materials and also for
inelastic materials provided the normality rule holds. A consequence of (6.129) is that the
tensor

— 95 8 0% W
igrs = = 6.131
oy a(’)er.s' a(“)Ers 66 sz ( )

has the symmetry property oCirs = oCrey

and the pure displacement and displacement/pressure formulations produce symmetric
coefficient matrices.

Using (6.130), the principle of virtual displacements at time ¢ in total Lagrangian form
with displacements as the only variables can be written as

LW —
f > &ajd°V=f 8W d°V
0 Oy

1
v 6061,

\ o[ W) -a
Oy

The linearization and finite element discretization of (6.132) was presented in Section 6.3.
We now use (6.132) as the starting equation to develop the displacement/pressure formula-
tion for large deformations.

The basic element interpolations that we shall use are

(6.132)

N q
‘uj = 2 b ‘ut; P = 2 8: 'pi (6.133)
k=1 i=1

where the h; are the displacement interpolation functions and the g; are the pressure
interpolation functions, with ‘F as the total element pressure at time t. Note that the
interpolation of the pressure may correspond to the u/p or to the u/p-c formulation (see
Section 5.3.5).

The key step in the construction of the displacement/pressure formulation is to prop-
erly modify the potential to include the effect of the interpolated pressure. For this purpose
we add to the potential §W a properly chosen potential $Q, which is a function of the
displacements and the separately interpolated pressure ‘p (see T. Sussman and K. J. Bathe
[B]). The principle of virtual work is then given by

5( f §W d°V> =R (6.134)
Oy

where W =W + 60 (6.135)

and we now consider the variation with respect to the interpolated displacements and the
interpolated pressure.

The modified potential {W must fulfill the requirements that use of (6.134) gives ‘j
as the actual solution for the pressure and also yields a physically reasonable constraint
between the interpolated pressure and the pressure computed only from the displacements.

A potential that fulfills these requirements for the isotropic materials considered later
is given by

= 1
t =1 —_ T )2
W =W - (5 — P (6.136)
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where « is the constant bulk modulus of the material. Using (6.136), the governing finite
element equations can be derived with the approach for linearization presented in Sec-
tion 6.3.1. Hence, we obtain for a typical element,

'‘KUU ‘KUP\ /(& TAR ‘FU
<'KPU 'KPP) <f)> - < 0 ) - <'FP> (6.137)
where @ and P are vectors of the increments in the nodal point displacements ‘ii; and nodal

point or element internal pressure variables ‘p; [note that here ‘ii; is any one of the compo-
nents ‘uf in (6.122), (6.128), and (6.133)]. The vectors ‘FU and ‘FP contain the entries

d
FU, = — ( f W d°V>
d U; oy

3 (6.138)
FP, = T(f 6Wd0V>
9'p oy
and the matrices ‘KUU, ‘KUP, ’KPU, and ‘KPP contain the elements
IFU;
IKUU,] = "
aluj
oFU, O'FP;
'KUP; = —— = —— = 'KPU, (6.139)
d Di d U;
o' FP;
IKPP,J = P
'p;
Using chain differentiation, we obtain
a4
‘FU, = f bSu7, 0% = d°V
Oy
1, _
FP; = —(p —'p) "';r dOV
oy K ap
b€ 0HEs 3%}
‘KUU, = f oCUUkus ;’ff‘ (,;’ﬁ d°v + f 8 3 f’;fﬁ d°v (6.140)
Oy
dodey 9°
'KUP; = f oCUPy °ff‘ ff d°v
o ¥ 9
i are
‘KPP; = f -1 if; g
op K 0P 3P
al
where 6Su = Oskl - _('_ - ~) _,L
dbey
_ 16p op 1, _ 8> ‘p (6.141)
CUUlys = 0Catrs — — b~ 2 — (1 — ) —E— :
¢ “ o K 00€; db€s K(p P) db€y Ob€xs

1 op
()CUPH = - P
K ao€k1
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Note-that in (6.141) we have

(5, = l(aéV_V N 66W>
0% T o\ dben  Obex
(B = 1(66& N az,Sk,) (6.142)
o 2 a(t)ers a(t)Gs,-
Furthermore, we note that with the interpolations of (6.133) we have
ap
5 E (6.143)
0'pi
i doew _ 1, )
and (SCC Exercise 6'42) duk = '2‘(0xn,k th,t + 0Xn,i th,k) (6.144)
62 t€ 1
alu——koa’l;:% = -2~(0h1_,k ol + ohii ohss, 1) Oum (6.145)

where a typical nodal point displacement is denoted as ‘u% (with the appropriate indices »
and L). These strain derivatives give the same contributions as do the quantities ye; and o1
used in Table 6.2.

A study of the above relations shows that if the pressure interpolation is not included,
the equations reduce to the total Lagrangian formulation already presented in Section 6.2.3
(see Exercise 6.43).

The displacement/pressure formulation is effective for the analysis of rubberlike
materials in large strains. In this case, the Mooney-Rivlin or Ogden material laws may be
used, for which the strain energy density per unit volume § W is explicity defined (see
Section 6.6.2).

Let us demonstrate that this formulation, when used in small strain elastic analysis,
reduces to the formulation already discussed in Section 5.3.5.

EXAMPLE 6.19: Show how the displacement/pressure formulation discussed above reduces
to the formulation presented in Section 5.3.5 when isotropic linear elasticity with small displace-
ments and small strains is considered.

Considering the general equations (6.137) to (6.145), we note that in this case:

The second Piola-Kirchhoff stress §.Su reduces to the engineering stress measure ‘o,
The Green-Lagrange strains § e, reduce to the infinitesimally small engineering strains ‘e,.
The nonlinear strain stiffness matrix in (6.140) is neglected.

The integration is over the volume V (which is equal to °V) and the subscript O on the
constitutive tensors is also not needed.

In this case we have
Eklrs = /\aklars + M(akrals + 8k.\'81r)

where A and u are the Lamé constants,

Ev E

/\=(1+v)(1—2v); M=2(1+v)
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with E and » the Young’s modulus and the Poisson’s ratio. The bulk modulus « is
_ E
T30 = 2)
We have ‘D= ~K'emm
'p
Sl SRS
a'eki K On
62 'E
6’eki 6‘e,s -
so that foa = 'S — 'ﬁ i
CUUkirs = Ciire — K 8 815
CUPki = —8k1
On substituting these quantities into (6.137), we note that the general formulation reduces, in this
case, to the formulation already presented in Sections 4.4.3 and 5.3.5.

6.4.2 Updated Lagrangian Formulation

As we discussed in Section 6.2.3, the updated Lagrangian formulation is conceptually
identical to the total Lagrangian formulation but uses the configuration at time ¢ as reference
configuration. In this case 7S; = ‘; and dfe; = d.e;, with the subscript T denoting the
configuration® that is fixed and used as reference, and

dey = %(%"1—2 + Z—‘i’:—") (6.146)
Following the presentation of the previous section, we thus obtain
diW = "7, deey (6.147)
and note that W'V = (W d°V (6.148)
If in addition we use
+Qd'V = 5Qd", % = det }X (6.149)

we can write the principle of virtual work (6.134) as
5 f U+ 4Q) dV = ‘R (6.150)
Tv
Note that if we use the modification to the total potential { W in the previous section,
t —_ _1_ t3 o 1R\2
6Q = 2K(p P) (6.151)

8 We use the capital letter T to denote the reference configuration considered fixed at time ¢, so that when
differentiations are performed, it is realized that no variation of this configuration is allowed.
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1 f G 11
then Q= —'ﬁ(ﬂ ~ Py (6.152)
with Kk* = kdet1X (6.153)

The governing finite element equations can now be derived by chain differentiation, and
provided the same physical material descriptions are used, the same finite element equations
are obtained as in the total Lagrangian formulation. The details of the derivation are given
by T. Sussman and K. J. Bathe [B].

6.4.3 Exercises

6.41. Show that using (6.136), the actual solution for the pressure is given by the independently

interpolated value ‘p.
6.42. Let‘u, = 2, h;'u’ and prove that (6.144) and (6.145) hold. Here you may want to recall that
a A t,M
—(M,;Lu“‘l = Awm,i8ulm = AL
o ux

where & is the Kronecker delta.

6.43. Show explicitly that the pressure/displacement mixed formulation reduces to the pure
displacement-based formulation if the pressure interpolation is not included.

6.44. Prove the relations in (6.140) and (6.141).

6.45. Consider the 4/1 plane strain element shown. Develop in detail all expressions for the calcula-
tion of the matrices in (6.137) assuming large strain analysis but do not perform any integra-
tions. (Hint: See Example 4.32.)

X2 A
2 - Bulk modulus x
X Shear modulus G
————
2

6.46. Consider the 4/1 element in Exercise 6.45 and develop in detail all expressions for the calcula-
tion of the matrices in (6.137) but corresponding to the updated Lagrangian formulation,
However, do not perform any integrations.

6.47. You want to obtain some insight into whether the computer program you use employs the
tangent stiffness matrix in plane strain analysis. Consider a single nine-node element in the
deformed state shown. Assuming that the calculation of the stresses and the force vector °F is
correct, design a test to determine whether the stiffness matrix calculation for node 1 is probably
also correct. For this analysis case the u/p formulation (9/3 element) would be efficient. (Hint:
Note that ‘'K = ¢F/d'U.)
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20 mm
— All midnodes are
halfway between 9-node element in plane strain
corners Mooney-Rivlin rubber model
mm | ¢ o ¢ Cy = 0.6 MPa,
C, =0.3MPg,
:// x = 2000 MPa
Time 0

6.48. Perform the numerical experiment in Exercise 6.47 for the case of the axisymmetric element
shown.

Time 0 5 Time ¢

| Ne iy -t
| A 7 All midnodes are halfway
I 10 1L . 1L 1L o A/" 10 between corner nodes
' - P
I«-———>|<——>‘ ‘<———>l Node 1
X 10 10 10
€ Mooney-Rivlin rubber model

C1=0.6 MPa,

C> = 0.3 MPa,

x = 2000 MPa

6.49. Use a computer program to analyze the thick disk shown. The applied pressure increases
uniformly, and the analysis is required up to a maximum displacement of 3 in.

7 ya
Oy
1in
T%f L=10in ~

¢ E =200 1b/in?

| v =0.499

6.50. Use a computer program to analyze the plate with a hole shown on the following page. The
plate is stretched by imposing a uniform horizontal displacement at the right end.
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10in Prescribed
e > N displacement
4 to3in
6in
‘[—@- 3in

[

AR
OQOOVOQO

- N

20in

E = 200 1b/in2
v =0.499
Plane strain conditions

6.5 STRUCTURAL ELEMENTS

A large number of beam, plate, and shell elements have been proposed for nonlinear
analysis (see, for example, A. K. Noor [A]). Our objective here is not to survey the various
formulations proposed in the literature but to present briefly those elements that we already
have discussed for linear analysis in Section 5.4. These beam, plate, and shell elements have
evolved from the isoparametric formulation and are particularly attractive because of the
consistent formulation, the generality of the elements, and the computational efficiency.

In the following discussion, we first consider beam and axisymmetric shell elements
and then discuss plate and general shell elements.

6.5.1 Beam and Axisymmetric Shell Elements

In this section we consider the one-dimensional bending elements that we discussed in
Section 5.4.1 for linear analysis; there we considered the plane stress and plane strain planar
beam elements, an axisymmetric shell element, and a general three-dimensional beam
element. We observed that the planar beam and the axisymmetric shell element formula-
tions are actually cases easily derivable from the general three-dimensional beam element
formulation. Hence, we consider here the calculation of the element matrices pertaining to
the large displacement—large rotation behavior of a general beam of rectangular cross-
sectional area. The relations given can be directly used to also obtain the matrices corre-
sponding to the planar beam elements and axisymmetric shell elements (see Examples 6.20
and 6.21).

Figure 6.5 shows a typical element in the original configuration and the position at
time ¢. To describe the element behavior we use the same assumptions that we employed in
linear analysis (namely, that plane sections initially normal to the neutral axis remain plane
and that only the longitudinal stress and two shear stresses are nonzero), but the displace-
ments and rotations of the element can now be arbitrarily large. The element strains are still
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X1

Figure 6.5 Beam element undergoing
large displacements and rotations

assumed to be small, which means that the cross-sectional area does not change.® This is
an appropriate assumption for most geometrically nonlinear analyses of beam-type struc-
tures. '

Using the general continuum mechanics equations for nonlinear analysis presented in
Section 6.2, the beam element matrices for nonlinear analysis are evaluated by a direct
extension of the formulation given in Section 5.4.1. The calculations are performed as in
the evaluation of the matrices of the finite elements with displacement degrees of freedom
only (see Sections 5.4.1 and 6.3).

With the same notation as in Section 5.4.1, the geometry of the beam element at time
t is given by

q q q
t
= X b xE + — D auhe 'V + —;— Db VA i=1,23 (6.154)
k=1

2 =1 k=1
where the coordinates of a typical point in the beam are ‘x, ‘x>, ‘x3. Considering the
°To have the element formulation applicable to large strains, the changes in thickness and width varying

along the length of the element would need to be calculated. These changes depend on the stress-strain material
relationship of the element.
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configurations at times 0, ¢, and ¢ + At, the displacement components are
= 'x; — %x; (6.155)
and u; = ’*A'x,» — 'x,- (6156)

Substituting (6.154) into (6.155) and (6.156), we obtain expressions for the displacement
components in terms of the nodal point displacements and changes in the direction cosines
of the nodal point director vectors; i.e.,

q t q
w= > h'ut +— »d ah(' V% + 2 Bk — V) (6.157)
k=1 2 k=1 2 k=1
q t q s q
and wi= 2 haut + = 2 ah Vs + — 2 bk VY (6.158)
k=1 2 k=1 2 k=
where Vk = mrAryk — oy (6.159)
V= eraepk ek (6.160)

The relation in (6.157) is directly employed to evaluate the total displacements and total
strains (hence also total stresses) for both the UL and TL formulations and holds for any
magnitude of displacement components.

We use the relation in (6.158) in the linearization of the principle of virtual work and
need to express the components V5 and V¥ of the vectors V¥, V¥ in terms of nodal
rotational degrees of freedom. Depending on the size of the incremental step, the actual
rotation corresponding to the vectors Vi and V¢ may be a large rotation, and therefore
cannot be represented by vector component rotations about the Cartesian axes. However,
we recall that our objective is to express the continuum linear and nonlinear strain incre-
ments in Tables 6.2 and 6.3 by finite element degrees of freedom and corresponding
interpolations so as to achieve a full linearization of the principle of virtual work (see
Section 6.3.1). For this purpose we define the vector of nodal rotational degrees of freedom
0; with components measured about the Cartesian axes and use the second-order approxi-
mations (see Exercise 6.56),

1
Vi= 0, X 'VE+ 50" X (@ X 'VH (6.161)

Vi= 0, X'Vt + %ok X (0, X 'V (6.162)

The only purpose of using 0, is to evaluate (approximations to) the new director vectors, and
0, is discarded thereafter.

Substituting from (6.161) and (6.162) into (6.158) we obtain the expression for u; to
evaluate the continuum linear and nonlinear incremental strain tensors in Tables 6.2 and
6.3. Since the relations in (6.161) and (6.162) involve quadratic expressions, we neglect all
higher-order terms in the solution variables to obtain the fully linearized form of the
principle of virtual work equation—linearized about the state at time ¢ with respect to the
solution variables (the nodal point displacements and rotations). With this process, the
exact tangent stiffness matrix is arrived at and employed in the incremental finite element



Sec. 6.5 Structural Elements 571

solution. However, we should note that the continuum linear strain increments in Tables 6.2
and 6.3 now include quadratic terms in rotations, and hence the right-hand-side terms

J- 6Sy Sy d'v and J‘ 'y &ey d'V
Oy ty

in (6.74) and (6.75) contribute, in this case, to the tangent stiffness matrices of the TL and
UL formulations. The same incremental equations are of course also obtained if we use the
procedure in Section 6.3.1 to develop these equations.

A kinematic assumption in this interpolation is that “plane sections remain plane,”
and hence warping is not included. However, warping displacement behavior can be added
to the assumed deformations as discussed in Section 5.4.1.

The linear and nonlinear strain displacement matrices of the beam element corre-
sponding to the UL formulation can now be evaluated using the approach employed in linear
analysis. That is, using (6.158), the strain components are calculated corresponding to the
global axes and are then transformed to obtain the strain components corresponding to the
local beam axes, 7, &, . Since the element stiffness matrix is evaluated using numerical
integration, the transformation from global to local strain components must be performed
during the numerical integration at each integration point.

Considering the TL formulation, we recognize that, first, derivatives analogous to
those used in the UL formulation are required, but the derivatives are taken with respect to
the coordinates at time 0. In addition, however, in order to include the initial displacement
effect, the derivatives of the displacements at time ¢ with respect to the original coordinates
are needed. These derivatives are evaluated using (6.157).

The above interpolations lead to the displacement-based finite element formulation
which, as discussed in Section 5.4.1, yields a very slowly converging discretization. In order
to obtain an effective scheme a mixed interpolation should be used which, for the beam
formulation, is equivalent to employing an appropriate Gauss integration order for the
r-direction integration: namely one-point integration for the two-node element, two-point
integration for the three-node element, and three-point integration for the four-node ele-
ment.

The finite element equations thus arrived at are

K Uy

= AR — F (6.163)
0

Having solved (6.163) for u, and 0, we obtain approximations for the nodal point displace-
ments and director vectors at time ¢ + At using

g = g 4w, (6.164)

and vk = yE+ | dO, X TVF (6.165)
0

HAYE = 1Yk 4 f d0, X "V* (6.166)
0
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The integrations in (6.165) and (6.166) can be performed in one step using an orthogonal
matrix for finite rotations (see, for example, J. H. Argyris [B] and Exercise 6.55) or in a
number of steps using a simple Euler forward method (see Section 9.6). Of course, 0, (and
u;) are approximations to the actual required increments (because of the linearization of the
principle of virtual work), but with the integrations in (6.165) and (6.166) we intend to
arrive at a more accurate evaluation of the new director vectors than by simply substituting
into (6.161) and (6.162).

The above presentation corresponds of course to the first iteration of the usual
Newton-Raphson iterative solution process or to a typical iteration when the last calculated
values of coordinates and director vectors are used.

It should be noted that this beam element formulation admits very large displace-
ments and rotations and has an important advantage when compared with the formulation
of a straight beam element based on Hermitian displacement interpolations: all individual
displacement components are expressed using the same functions because the displacement
expressions are derived from the geometry interpolation. Thus there is no directionality in
the displacement interpolations, and the change in the geometry of the beam structure with
increasing deformations is modeled more accurately than by using straight beam elements
based on Hermitian functions, as for example presented by K. J. Bathe and S. Bolourchi [A].

We mentioned earlier that this general beam formulation can be used to derive the
matrices pertaining to the formulations of planar beam elements for plane stress or plane
strain conditions or axisymmetric shell elements. We demonstrate such derivations in the
following examples.

EXAMPLE 6.20: Consider the two-node beam element shown in Fig. E6.20. Evaluate the
coordinate and displacement interpolations and derivatives that are required for the calculation
of the strain-displacement matrices of the UL and TL formulations.
ty2 o [~ Sin 9,
Vs [ cos ', \tez
X2, 'Uz A
tv;
0
1 / Attime t
h
At time 0
Oy s 0
h/Vs ] A 0v§=[1]
r
hl 1 2,
[ x, fuy
ot 07 -
Figure E6.20 Two-node beam element in large displacements and rotations
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Using the variables in Fig. E6.20, we have corresponding to (6.154),

1—r 1+r shil — r shil + r
ty — ty1 12 _ a st
X ( 3 )x.+< 2 )x. 2( 2 )sm 6, 2( 2 )sm@z
1—r\, 1+ r shil —r shil +r
t = + 142 1 + 1
X2 ( 3 )x ( 2 >x2+—2< 3 )cos 6, —2< 2 )cos&l
1+
OX1=< 2r>OL

Ox, = =—

2

o=

Hence, the displacement components are at any point at time ?,

£yl ty2 . 0 ty2  tyl 0 —_ +
‘u, = (x. * ;' L) + (x. ;' L)r—%lKl 3 r) sin ‘6, + (l r) sin '01]

tyl 142 142 [ |
= () (272 2[5 omm + () e ]
Uy ( 2 3 r+2 2 cos ‘6, + 2 cos ‘6, — 1

The incremental displacements are given by (6.158); hence,

- +
u = ! 3 Tul + ! 3 Tuz + % (——2—> [(—COS ‘0)6, + _%_fl 'El(ﬁ)zjl
(2
( )[ —cos '6,)6, + - s1n '02(0:)2]
1 - L+r 1
N e al s;l ( 2 )[( sin 600, - E_COS_'O‘(_O‘)Z]
b

+ %(1 ; r)[(—sin 6:)6, — %cos '01(01)2]

We note the quadratic terms in nodal rotations, which are underlined with a dashed line.
Using (a) and (b) to evaluate the continuum incremental strain terms oey, €y, o7y, and 7y in
Tables 6.2 and 6.3, we recognize that the fully linearized finite element equations are obtained
by including the underlined terms in the evaluation of fo, ¢S doey d°V and [, ‘7, die; d'V. These
terms add for the structural elements a contribution to the nonlinear stram stiffness matrices.
However, these quadratic terms in rotation do not contribute in the linearized form of the other
integrals because they result in those integrals in higher-order terms that are neglected in the
linearization.

In considering the UL formulation, the required derivatives for the Jacobian are

6'x1 L cos

™ =—2—————(sm 6, — sin '6,)

o (Yl
a5 2 2 )

dx, Lsna
— + — ? — t
or 2 7] (cos '8, — cos '6,)

’
) sin ’02]
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dx h|fl—r , 1+r ,
sz[( ) e o+ (1) oo "2]

where we assumed 'L = °L = L.
Next we consider the TL formulation. Here we use

°L
0y = 2

0

NI O

Also, the initial displacement effect is taken into account using the derivatives

4
ol1,1

1 - . 14+r\ .
6u|,2=—< 2r>sm'0.—< 3 )sm'&z

. sh
oz, = sin a + E(cos '8, — cos ‘6,)

— +
$uz2 = (l ) r) cos ‘6, + (1 r

where we again assumed 'L = °L = L.

In each case, we note that these expressions lead to the strain terms corresponding to the
global stationary coordinate system. These terms must be transformed to the local 1), § axes for
construction of the strain-displacement matrix of fhe element.

Finally, we should note that the element can be employed in plane stress or plane strain
conditions, depending on the stress-strain relation used (see Section 4.2.3). In plane stress
analysis the thickness of the element (normal to the x,, x, plane) must of course be given (this
thickness is assumed to be unity in plane strain analysis).

h . .
(cosa — 1) — ;—l:(sm '@, — sin ')

)COS'Oz_l

EXAMPLE 6.21: The two-node element in Example 6.20 is to be used as a shell element in
axisymmetric conditions. Discuss what terms in addition to those given in Example 6.20 need to
be included in the construction of the strain-displacement matrices for the TL formulation.

In axisymmetric analysis the integration is performed over 1 radian and the hoop strain
effect must be included (see Example 5.9). Table 6.5 gives the incremental hoop strain €33, which
must be evaluated using the interpolations stated in Example 6.20 to give a third row in the
strain-displacement matrices o B and § B.,. The third row of the matrix §, B, corresponds to the
term u,/°x, , hence,

| ... ..
N | ... ]
oo l_rl |
2%, | |

|
|
0 : :s_h<l+r>cos02

I I

b

—sh 1—-r>c0s’01 | 1+7r |
( | | 2 2 %

2 2 Oxy 2 %,
where we have used the following ordering of nodal variables in the solution vector
af = [u} uj 0, u? u 0]

and % = [(1 + r)/2]L. The third row of the matrix B, corresponds to the strain term
‘uyu1/(°x,)? and for its evaluation the interpolations of ‘u., °x1, and u, are similarly used.
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The terms in the nonlinear strain stiffness matrix corresponding to ; S3; are evaluated from
the expression

sh{1 — r\ sin ‘6, ‘U, 1 + r\ sin ‘6, Uy
03533 166 1 +— + & —_ —
° 33{ 1[ 2 < 2 ) o, < °x1>] 02[ < 2 ) Ox, <l - oxl)]&
1-r sh({1 — r\ cos ‘6 1+r shil + cos ‘6,
+ I — ek ) 2 i
<2°x1 dul [2< 2 x ]861 20, oui [2< 2 ) °x1 ]602>
1—r sh{l — r\ cos'6, 1+r sh{l + r\ cos ‘6,
X 1 i 2 _ —
<2°x1“‘ [2< 2 ) °xy ]6‘ 20, [2< 2 ) °x ]0‘>}

This expression is of the form §@7({K3, )i, where K3, represents a contribution to the element
nonlinear strain stiffness matrix.

6.5.2 Plate and General Shell Elements

Many plate and shell elements have been proposed for the nonlinear analysis of plates,
specific shells, and general shell structures. However, as with the beam element discussed
in the previous section, the isoparametric formulations of plate and shell elements for
nonlinear analysis are very attractive because these formulations are both consistent and
general, and the elements can be employed in an effective manner for the analysis of a
variety of plates and shells. As in linear analysis, in essence a very general shell theory is
employed in the formulation so that the shell elements are applicable, in principle, to the
analysis of any plate and shell structure.

Considering a plate undergoing large deflections, we recognize that as soon as the plate
has deflected significantly, the action of the structure is really that of a shell; i.e., the
structure is now curved, and both membrane and bending stresses are significant. There-
fore, in the discussion below we consider only general shell elements, where we imply that
if a specific element is initially flat, it represents a plate.

In the following presentation we consider the nonlinear formulation of the MITC shell
elements discussed for linear analysis in Section 5.4.2. Figure 6.6 shows a typical nine-node

At time zero

Figure 6.6 Shell element undergoing large displacements and rotations
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element in its original position and its configuration at time ¢. The element behavior is based
on the same assumptions that are employed in linear analysis, namely, that straight lines
defined by the nodal director vectors (which, usually, give lines that in the original config-
uration are close to normal to the midsurface of the shell) remain straight during the element
deformations and that no transverse normal stress is developed in the directions of the
director vectors. However, the nonlinear formulation given here does admit arbitrarily large
displacements and rotations of the shell element.'°

The UL and TL formulations of the shell element are based on the general continuum
mechanics equations presented in Section 6.2.3 and are a direct extension of the formula-
tion for linear analysis. Also, the calculation of the element matrices follows closely the
calculations used for the beam elements (see Section 6.5.1).

Using the same notation as in Section 5.4.2, the coordinates of a generic point in the
shell element now undergoing very large displacements and rotations are (see K. J. Bathe
and S. Bolourchi [B])

q q
= D bt + £ 2 a v (6.167)
k=1 2 k=1
Using (6.167) at times O, ¢, and ¢ + Az, we thus have
i = 'x; — %% (6.168)
and u = HA'X,‘ — (6169)
Substituting from (6.167) into (6.168) and (6.169), we obtain
q q
'u,- = 2 hk 'u{-‘ + —t' 2 akhk ('Vﬁi - OVfu') (6170)
k=1 2 k=1
q t q
and u; = 2 hkl.l:'c + — 2 akhk Vfu (6171)
k=1 2 k=1
where V& = gk ok (6.172)

The relation in (6.170) is employed to evaluate the total displacements and total
strains (hence also total stresses for both the UL and TL formulations) of the particles in
the element. To apply (6.171) the same thoughts as in the beam element formulation for use
of (6.158), (6.161), and (6.162) are applicable. Now we express the vector components V%
in terms of rotations about two vectors that are orthogonal to “V. These two vectors ‘V¥ and
'V% are defined at time O (as in linear analysis) using

oYk — e X OVf,
= Te il (6.173)
V% = OVE X OV (6.174)

where we set V4 equal to es if °V} is parallel to e,. The vectors for time ¢ are then obtained
by an integration process briefly described for the director vector in (6.177).

19 As in the beam formulation in Section 6.5.1, to have the element formulation applicable to large strains,
the change in thickness varying over the surface of the element would need to be calculated. The change in thickness
depends on the material stress-strain relationship of the element.
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Let a; and S3; be the rotations of the director vector * V& about the vectors * V§ and * V&
in the configuration at time ¢. Then we have approximately for small angles a; and B, but
including second-order rotation effects (see Exercise 6.57),

Vi= —'VEa + Vi B — Lk + BD 'Vh (6.175)

We include the quadratic terms in rotations because we want to arrive at the consistent
tangent stiffness matrix, and these terms contribute to the nonlinear strain stiffness effects.
Namely, substituting from (6.175) into (6.171), we obtain

q q
U, = 2 hkul»‘ -+ %kz akhk[ - tV’éi (s 79 + ! ’fi Bk - %(a,% + ﬁ%) 'Vfujl (6176)
k=1 =1
Using this expression to evaluate the continuum terms in Tables 6.2 and 6.3, we notice that
the terms fi, ‘r; 8:e;; d'V and Jo, 5S; oe,; d° V. result in a stiffness contribution due to the
quadratic terms in (6.176) that we naturally add to the other terms of the nonlinear strain
stiffness matrix.
We arrived at a similar result in the formulation of the isoparametric beam elements
discussed in the previous section [see (6.161) and (6.162) and the ensuing discussion].
The finite element solution will yield the nodal point variables ¥, ax, and B, which
can then be employed to evaluate ***'V¥,

AYE = 1VE + f —"V% day + "VE dpi (6.177)
a, B

This integration can be performed in one step using an orthogonal matrix for finite rotations

(see, for example, J. H. Argyris [B] and Exercise 6.57) or using the Euler forward method

and a number of steps (see Section 9.6).

The relations in (6.167) to (6.176) can be directly employed to establish the strain-
displacement matrices of displacement-based shell elements. However, as discussed in
Section 5.4.2, these elements are not efficient because of the phenomena of shear and
membrane locking. In Section 5.4.2, we introduced the mixed interpolated elements for
linear analysis, and an important feature of these elements is that they can be directly
extended to nonlinear analysis. (In fact, the elements were formulated originally for nonlin-
ear analysis, and the linear analysis elements are obtained simply by neglecting all nonlinear
terms.)

The starting point of the formulation is the principle of virtual work written in terms
of covariant strain components and contravariant stress components. In the total Lagran-
gian formulation we use

f t+A6§zj 5'+A6€ij 4%V = 1+Agp (6.178)
Oy
and in the updated Lagrangian formulation we use
f Sy §rrAlE, ATV = AR (6.179)
ty

The incremental forms are of course given in Tables 6.2 and 6.3, but here covariant strain
and contravariant stress components are employed.

As discussed in Section 5.4.2, the basic step in the MITC shell element formulation
is to assume strain interpolations and to tie these to the strains obtained from the displace-
ment interpolations.
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The strain interpolations are as detailed in Section 5.4.2, but of course the interpola-
tions are now used for the Green-Lagrange strain components *% €4° and ‘2 €55, where
the superscript AS denotes assumed strain. These assumed strain components are tied to the
strain components ‘*% &5 and "% €Y', obtained from the displacement interpolations
(6.170) and (6.171).

The covariant strain components **%4 &5 and “*% &} a-e calculated from the funda-

mental expressions using base vectors,

z+A6€ilj_JI — %(I+Algi . I+Atgj — Og‘_ . Ogj) (6180)
and HAMED = L(ttiig, -l — 1 tg ) (6.181)
i x °x
Wh I+At’_= : ti.___._; 0‘_=_ .
ere g o g or, g . (6.182)

andweuser, =r,n =y, r =t, and of course,
tHarg = Ox 4 1Ay, x =% + 'u (6.183)

Using the interpolations discussed in Section 5.4.2, with the above strain components, the
MITC shell elements already presented for linear analysis in Section 5.4.2 are now ob-
tained, including large displacement and large rotation effects. These elements satisfy the
criteria of reliability and effectiveness that we enumerated in Section 5.4.2.

It may be noted once more that the shell elements discussed above are general
elements since no specific shell theory has been employed in their formulation. In fact, the
use of the general incremental virtual work equation with only the two basic shell assump-
tions-—that lines originally normal to the shell midsurface remain straight and that the
transverse normal stress remains zero (more accurately, actually the directions of the direc-
tor vectors are used)—is equivalent to using a general nonlinear shell theory. This general-
ity in the formulation is preserved by employing the above interpolations of the shell
geometry, displacements, and strains. An important feature is the use of the director vector
of the shell midsurface which makes it possible for the elements to undergo arbitrary large
displacements and rotations.

6.5.3 Exercises
6.51. Consider the two-node beam element shown.

(a) Plot the displacements of the material particles corresponding to ‘uf, ‘u3, and ‘6,, and
evaluate the Green-Lagrange strain components corresponding to these displacements at

r=s=20.
u
[0 %9,
X2 A
o}
!
/ tu%
J\ 2
1 I 1¢ B R
X
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(b) Establish the derivatives ou;; (i.e., du:;/3%;), i = 1, 2;j = 1, 2, corresponding to the nodal
incremental displacement and rotation variables u3, 43, and 6,
At node 1 displacements and rotations are zero; at node 2 ‘u} = 0, 'y = 2,6, = 10°.
6.52. Consider the two-node beam element shown. Calculate for the degrees of freedom %3, 43, and
6, the stiffness matrix ‘K and nodal force vector ‘F using the total Lagrangian formulation.
(a) Use the displacement method and analytical integration.
(b) Use one-point Gauss integratioa for the r direction.

X2 A
2
\ U2
is 2 A
0
r
e — b
11 REVAES
e f -
5 20
All nodal point displacements Young's modulus E
and rotations are zero attime ¢, Shear modulus G
except 'u? = 0.1

6.53. Perform the same calculations as in Exercise 6.52 but now assume that the element is an
axisymmetric shell element, with the x, axis the axis of revolution.

6.54. Consider the beam element in Exercise 6.52. Calculate the stiffness matrix ‘K and force vector
‘F for the degrees of freedom at node 2 using the mixed interpolation of linear displacements
and rotations and constant transverse shear strain (see Section 5.4.1).

6.55. Consider the four-node shell element shown. Evaluate the displacements of the particles in the

element for the given nodal point displacements and director vectors at time f. Draw these
displacements over the original geometry of the element.

x Original geometry of element
3 4\

T

e
______________________ T x

20 -

ut =0 fori=1,2,3; k=123
0

Vi=101; k=123
1

ut = 0.1; ‘u3 = 0.1, ‘u

W
I
—
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6.56. Show that the expressions in (6.161) and (6.162) contain all second-order terms in 0, to obtain
the increments in the director vectors. Obtain the result by a simple geometric argument and by
the fact that the rotation can be expressed through the rotation matrix Q, see, for example,
J. H. Argyris [B], where

) sin 2t \2
Q=1+ = Yksk + : 2 4 Yo = (6} + 6, + 0%3)%
Vi 2\ %
2
and 0 6 6o
Sc=| 6 0 —6u
—62  Ou 0

6.57. Show that the expression in (6.175) includes all second-order terms-in o, and B, to obtain the
increment in the director vector ‘'V%, Obtain the result by a simple geometric argument and by
use of the matrix Q of Exercise 6.56 but with

0 O B
w=(@t+prF S=| 0 0 -«
B o O
6.58. Calculate the covariant strain terms 4€ ' for the element and its deformation given in Exer-

cise 6.56.

6.59. Use a computer program to solve for the large displacement response of the cantilever shown.
Analyze the structure for a tip rotation of 7 (180 degrees) and compare your displacement and
stress results with the analytical solution. (Hinz: The four-node isoparametric mixed interpolated
beam element performs particularly well in this analysis.)

—] e—b

ANNANNNNNSS
>

E =200,000
v =030
h=1
L=1
b=1
6.60. Use a computer program to solve for the response of the spherical shell structure shown. Calculate
the displacements and stresses accurately. (The solution of this structure has been extensively
used in the evaluation of shell elements; see, for example, E. N. Dvorkin and K. J. Bathe [A]).

00

All edges P
of shell Radius = 2540
are hinged Thickness = 99.45
a=784.90
E =68.95
v=0.30
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6.6 USE OF CONSTITUTIVE RELATIONS

In Sections 6.3 to 6.5 we discussed the evaluation of the displacement and strain-
displacement relations for various elements. We pointed out that these kinematic relations
yield an accurate representation of large deformations (including large strains in the case of
two- and three-dimensional continuum elements).

The kinematic descriptions in the element formulations are therefore very general.
However, it must be noted that in order for a formulation of an element to be applicable to
a specific response prediction, it is also necessary to use appropriate constitutive descrip-
tions, Clearly, the finite element equilibrium equations contain the displacement and strain-
displacement matrices plus the constitutive matrix of the material (see Table 6.4). There-
fore, in order for a formulation to be applicable to a certain response prediction, it is
imperative that both the kinematic and the constitutive descriptions be appropriate. For
example, assume that the TL formulation is employed to describe the kinematic behavior of
a two-dimensional element and a material law is used which is formulated only for small
strain conditions. In this case the analysis can model only small strains although the TL
kinematic formulation does admit large strains.

The objective in this section is to present some fundamental observations pertaining
to the use of material laws in nonlinear finite element analysis. Many different material laws
are employed in practice, and we shall not attempt to survey and summarize these models.
Instead, our only objectives are to discuss the stress and strain tensors that are used
effectively with certain classes of material models and to present some important general
observations pertaining to material models, their implementations, and their use.

The three classes of models that we consider in the following sections are those with
which we are widely concerned in practice, namely, elastic, elastoplastic, and creep material
models. Some basic properties of these material descriptions are given in Table 6.7, which
provides a very brief overview of the major classes of material behavior.

In our discussion of the use of the material models, we need to keep in mind how the
complete nonlinear analysis is performed incrementally. Referring to the previous sections,
and specifically to relations (6.11), (6.78), and (6.79) and Section 6.2.3, we can summarize
the complete process as given in Table 6.8.

This table shows that the material relationships are used at two points of the solution
process: the evaluation of the stresses and the evaluation of the tangent stress-strain ma-
trices. The stresses are used in the calculation of the nodal point force vectors and the
nonlinear strain stiffness matrices, and the tangent stress-strain matrices are used in the
calculation of the linear strain stiffness matrices. As we pointed out earlier (see Section 6.1),
it is imperative that the stresses be evaluated with high accuracy since otherwise the
solution result is not correct, and it is important that the stiffness matrices be truly tangent
matrices since otherwise, in general, more iterations to convergence are needed than
necessary.

Table 6.8 shows that the basic task in the evaluation of the stresses and the tangent
stress-strain matrix is the following:

Given all stress components ‘o and strain components ‘e and any internal material
variables that we call here ‘;, all corresponding to time ¢,

{’0’, ’e, tKl, th, - }
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TABLE 6.7 Overview of some material descriptions

Examples

Material model Characteristics
Elastic, linear or Stress is a function of strain only; same
nonlinear stress path on unloading as on loading.
'a'ij =1 ijrs ters

linear elastic:
*Cyjrs is constant
nonlinear elastic:

!Cyrs varies as a function of strain

Almost all materials
provided the stresses
are small enough:
steels, cast iron,
glass, rock, wood,
and so on, before
yielding or fracture

Hyperelastic Stress is calculated from a strain energy Rubberlike materials,

functional W, e.g., Mooney-Riviin
o - oW and Ogden models
bt ddey

Hypoelastic Stress increments are calculated from strain Concrete models (see,
increments for example, K. J.

) Bathe, J. Walczak, A
doy = C,“ de,s ? o N
v o Welch, and N. Mistry
The material moduli Cj;,, ate defined as [AD
functions of stress, strain, fracture criteria,
loading and unloading parameters,
maximum strains reached, and so on.

Elastoplastic Linear elastic behavior until yield, use of Metals, soils, rocks,
yield condition, flow rule, and hardening when subjected to
rule to calculate stress and plastic strain high stresses
increments; plastic strain increments are
instantaneous.

Creep Time effect of increasing strains under Metals at high
constant load, or decreasing stress under temperatures
constant deformations; creep strain
increments are noninstantaneous.

Viscoplasticity Time-dependent inelastic strains; rate effects Polymers, metals

are included.

and also given all strain components corresponding to time ¢ + At and end of itera-

tion (i — 1), denoted as ‘*%e¢

Calculate all stress components, internal material variables, and the tangent stress-

strain matrix, corresponding to ‘**'e‘" Y,

i— - i—1 i—1
{1+Ar0.(x 1)’ C(l 1), r+A:K(11 ), t+AlK(2 )’ .

Hence we shall assume in the following discussion that the strains are known corre-
sponding to the state for which the stresses and the stress-strain tangent relationship are
required. For ease of writing, we shall frequently also not include the superscript (i — 1)
but simply denote the current strain state as ‘**‘e. This convention shall not imply that no
equilibrium iterations are performed. However, since the solution process for the stresses
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TABLE 6.8 Solution process in incremental nonlinear finite element analysis

Accepted and known solution at time t:  stresses ‘o
strains ‘e
internal material parameters ‘;, ‘Kz, . . .
1. Known: nodal point variables **4U% ! and hence element strains **+%%¢"
2. Calculate: stresses “+3gl™1
tangent stress-strain matrix corresponding to "*'g¢~Y, denoted as C¢
intemal material parameters %k { ™V, A fTN, .,
a. In elastic analysis: the strains “+4%¢¢~D directly give the stresses **3g~" and the stress-strain matrix
cén
b. In inelastic analysis: an integration process is performed for the stresses

+ali=1)

r+A:0.(i—1) ='g + do
!
and the tangent stress-strain matrix C¢~" corresponding to the state ¢ + At, end of iteration (i — 1), is
evaluated consistent with this integration process.
In isoparametric finite element analysis these stress and strain computations are performed at
all integration points of the mesh in order to establish the equations used in step 3.
3. Calculate: nodal point variables AU@ using “+¢K¢~) AU®? = #&R — #+AF6-1 and then “+4(@ =
r+Axu(i—1) + Au(i)
Repeat Steps 1 to 3 until convergence.

and the tangent stress-strain matrix is identical whether or not equilibrium iterations are
used, we need not show the iteration superscript. All that matters is that the conditions are
completely known at time ¢ and a new strain state has been calculated for which the new
stresses, internal material parameters, and the new tangent stress-strain matrix shall be
evaluated.

We should note that the evaluation of the stresses and the tangent stress-strain matrix
is, in our numerical evaluation of the element stiffness matrix and force vector, performed
at each element integration point. Hence, it is imperative that these computations be
performed as efficiently as possible.

In inelastic analysis, an integration process is needed from the state at time ¢ to the
current strain state, but in elastic analysis no integration of the stresses is required (as we
employ a total strain formulation and not a rate-type formulation; see Example 6.24). In
elastic analysis, the stresses and the tangent stress-strain matrix can be directly evaluated
for a given strain state. Hence, in the following discussion when considering elastic condi-
tions (Sections 6.6.1 and 6.6.2), we shall also, for further ease of writing, simply consider
the strain state at time ¢ and evaluate the corresponding stresses and tangent stress-strain
matrix at that time [the same procedure is used for any time, including time ¢ + Ar].

6.6.1 Elastic Material Behavior—Generalization
of Hooke’'s Law

A simple and widely used elastic material description for large deformation analysis is
obtained by generalizing the linear elastic relations summarized in Chapter 4 (see Table 4.3)
to the TL formulation:

i)Sy = i)cijrs b€rs (6184)
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where the 45 and §€,s are the components of the second Piola-Kirchhoff stress and Green-
Lagrange strain tensors and the $Cy;,, are the components of the constant elasticity tensor.
Considering three-dimensional stress conditions, we have

5Cijrs = A8y, + p(8:r8; + 8is8y) (6.185)
where A and u are the Lamé constants and §; is the Kronecker delta,
A= Ev . _ E
A+na-20 H* 20+
0; [ # ]
8 = { l. _ J.
1; i=j

The components of the elasticity tensor given in (6.185) are identical to the values given in
Table 4.3 (see Exercise 2.10).

Considering this material description we can make a number of important observa-
tions. We recognize that in infinitesimal displacement analysis, the. relation in (6.184)
reduces to the description used in linear elastic analysis because under these conditions the
stress and strain variables reduce to the engineering stress and strain measures. However,
an important observation is that in large displacement and large rotation but small strain
analysis, the relation in (6.184) provides a natural material description because the compo-
nents of the second Piola-Kirchhoff stress and Green-Lagrange strain tensors do not change
under rigid body rotations (see Section 6.2.2 and Examples 6.12 to 6.15). Thus, only the
actual straining of material will yield an increase in the components of the stress tensor, and
as long as this material straining (accompanied by large rotations and displacements) is
small, the use of the relation (6.184) is completely equivalent to usmg Hooke’s law in
infinitesimal displacement conditions.

The fundamental observation that “the second Piola-Kirchhoff stress and Green-
Lagrange strain components do not change measured in a fixed coordinate system when the
material is subjected to rigid body motions” is important not only for elastic analysis.
Indeed, this observation implies that any material description which has been developed for
infinitesimal displacement analysis using engineering stress and strain measures can di-
rectly be employed in large displacement and large rotation but small strain analysis,
provided second Piola-Kirchhoff stresses-and Green-Lagrange strains are used. Figure 6.7
illustrates this fundamental fact. A practical consequence is, for example, that elastoplastic
and creep material models (see Section 6.6.3) can be directly employed for large displace-
ment, large rotation, and small strain analysis by simply substituting second Piola-Kirchhoff
stresses and Green-Lagrange strains for the engineering stress and strain measures.

The preceding observations are of special importance because, in practice, Hooke’s
law is applicable only to small strains and because there are many engineering problems in
which large displacements, large rotations, but only small strain conditions are encoun-
tered. This is, for example, frequently the case in the elastic or elastoplastic buckling or
collapse analysis of slender (beam or shell) structures.

The stress-strain description given in (6.184) implicitly assumes that a TL formula-
tion is used to analyze the physical problem. Let us now assume that we want to employ a
UL formulation but that we are given the constitutive relationship in (6.184). In this case
we can write, substituting (6.184) into (6.72),

J; f)C,'jrs 0€Ers 8665,‘ d°’v =R (6186)
v



Sec. 6.6 Use of Constitutive Relations

T
°xz, I A
Configuration
1 .0-—>| attime t
Yola
1l0
A ila Oxy, 5y
Original

configuration

Figure 6.7 Large displacement/large rotation but small strain conditions

Thus, if we define a new constitutive tensor,

t

t F t t t t
ICmnpq ) 0Xm, i 0Xn, j OCljrs 0Xp,r qu,s

p

0

A~

0 0 ! 0 0
Xim i Xjn iC, X, p ¢ X
tAim it Ajn themnpg t Ar,p 1 As,q

meaning that 0Cyrs =

t

h~)

and if we use (see Example 6.10)
8mn = Xim Wi Bb€;

we recognize that (6.186) can be written as
J :Cmnpq :qu 5temn d'v = tgt
ty

where “Tmn = {Conapg 1€pg
and the le4, are the components of the Almansi strain tensor,

t.,A —= 0 0 t
€pg = tXr.ptXs,q 0€rs

Yl 4, Dol 4, B are large
811, 822, Y12 << 1
§81 =71y

§822 =17

§81p = 17y

(6.187)

(6.188)

(6.189)

(6.190)

(6.191)

(6.192)

Like the Green-Lagrange strain tensor, the Almansi strain tensor can also be defined in a

number of different but completely equivalent ways,'' namely,

A1
e = 3wy + fuj = i )

and we have ted dix d'x; = 3{(d's)* — (d°)%}

(6.193)
(6.194)

1 HoWever, in contrast.to the Green-Lagrange strain tensor, the components of the Almansi strain tensor are

not invariant under a rigid body rotation of the material.
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EXAMPLE 6.22: Prove that the definitions of the Almansi strain tensor given in (6.192) to
(6.194) are all equivalent.
The relation in (6.192) can be written in matrix form as

et = {XT4e fX (a
But using (6.54) to substitute for je in (a) and recognizing that
XX =1
we obtain et =11 — ’X7X) )
However, we have X = [V
where, in accordance with (6.21),
I
ax;
— a . 0T — [0 0 0
'V_E’ X" =[xy %x2 %x3)
9
| 9%

\Substituting into (b), we obtain
fe* = HI ~ [V (x" ~ W)LV(x ~ )T

Since NVNixT =1
we thus obtain et =11 - 1- ., Vu){d - V)]
or et = LV’ + (Vah) — (Vah)(V a7 ©

and the components of je* in (c) are the relations in (6.193).
To.show that (6.194) also holds, we use the relation in (b) to obtain

d'x” le* d'x = 1(d'x” d'x — d°%" d°x) @
because d°% = X d'x
But (d) can also be written as X
d'x” le* d'x = 3[(d's)* — (d°)*] C)
because dx" d'x = (d's)% d°x" d’%x = \(d°s)2

and (e) is equivalent to (6.194).

Of course, using (6.190) with the Almansi strain and the constitutive tensor ; Cnp, i
quite equivalent to transforming the second Piola-Kirchhoff stress §S5;; (obtained using
685 = 6 Cijrs 6€:5) to the Cauchy stress and then using (6.13) to evaluate ‘R. Indeed, if § Cyjs
is known, this procedure is computationally more efficient, and the definition and use of the
Almansi strain with (6.190) may be regarded as only of theoretical interest.

However, in the following example we prove an important result, which can be stated
in summary as follows.

Consider the TL and UL formulations in Tables 6.2 and 6.3,

f oC,-jr, 0€rs 808,-}' dOV + f 6S,, 607);] dOV = H'A‘gl - f 6SU 808;']‘ dOV (6195)
Oy Oy oy
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f tCijrs t€rs 5teij d’V + f tTij 5tnij le = H—Atgt - f "T,j 51311‘ d'V (6196)
v v tv

The corresponding integral terms in the formulations are identical provided the trans-
formations for the stresses given in (6.69) and for the constitutive tensors given in (6.187)
are used. Hence, whether we choose the TL or the UL continuum formulation is decided
merely by considerations of numerical efficiency.

EXAMPLE 6.23: Consider the total and updated Lagrangian formulations in incremental form
(see Tables 6.2 and 6.3).

(a) Derive the relationship that should be satisfied between the tensors o Cyys and ,Cjjrs SO
that the incremental relations

Osi' = OCijr.\' 0€rs (a)
and 1Sij = Cips +€s (b)

refer to the same physical material response.

(b) Show that when the relationship derived in part (a) is satisfied, each integral term in
the linearized TL formulation is identical to its corresponding term in the UL formulation.

A constitutive law relates a stress measure to a strain measure. Since there are different
stress and corresponding strain measures, the constitutive law for a given material may take
different forms, but these forms are related by the fact that they all describe the same given
material. Hence, if equations (a) and (b) describe the same material, oCyrs and (C,y, must be
related by purely kinematic transformations.

To derive the kinematic transformations we express .S, in terms of oSy, and , €, in terms

of 06Ers.
We have Sy = uSy — 'y ©
‘p
Usmg ’Tij = 0. 6xi,r (‘)Srs (’)Xj.s (d)
p
‘P
and H—A:'Sij = o 6xi.r H-A(')Srs 6xj,s
p
and (c), we obtain
‘P
tsij = 6;') 6xi.r 6x]',s Osrs (e)
We also have for the strain terms
0€j = '+A(§€ij — o€
and € = ey
-1
Hence, o€ = (" ¥xn; " ¥xk; — dxni dxn)) )
and 1€ = (T x hixe, — &) (g

We should note here that ,€; is the Green-Lagrange strain based on the displacements from time
t to time ¢ + At, with the reference configuration at time ¢.'?

2For example, ‘e; = 0, and this strain measure should not be confused with the Almansi strain {e{ defined
in (6.192).



